Guillaume Bucher, Gabriella F Schirinzi, Chiara Verra, Hind El Hadri, Otmar Geiss, Douglas Gilliland
{"title":"Total organic carbon (TOC): a simple tool for assessing micro(nano)plastics and nanocellulose recovery during size-based fractionation.","authors":"Guillaume Bucher, Gabriella F Schirinzi, Chiara Verra, Hind El Hadri, Otmar Geiss, Douglas Gilliland","doi":"10.1007/s00216-025-05812-4","DOIUrl":null,"url":null,"abstract":"<p><p>The assessment of analyte recovery during sample preparation is a critical quality control parameter in method development. While elemental mass spectrometry techniques, such as ICP-MS, are very effective for assessing the recovery of particulate materials containing metallic elements, there is no equivalent applicable to metal-free carbon or CHNO-based particulate polymer materials. Vibrational spectro-microscopy or thermo-analytical techniques can be used to quantify polymer-based micro- and nanoparticles, but are typically expensive and time-consuming techniques that require higher levels of expertise. This study investigated the potential of a liquid-based total organic carbon (TOC) analyzer as a simple, cost-effective, and universal method for determining the recovery of polymer-based particulate micro- and nanomaterials following filtration, centrifugation, and asymmetric flow field flow fractionation (AF4) processes. A good correlation between solid contents and TOC analysis was demonstrated for standard polystyrene (PS) particle suspensions of various sizes, ranging from 50 nm to 90 μm (79.2 to 113.6% recovery), and other types of synthetic and natural polymeric particle suspensions, including polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyethylene terephthalate (PET), and cellulose (86.2 to 126.2% recovery). Liquid-based TOC was then successfully applied to estimate particle recovery after various preparatory and fractionation steps, including the determination of filtration recoveries for nanocellulose suspensions (99.0 to 101.4% recovery) and PS micro- and nanoparticles spiked into environmental lake and river freshwater samples (70 to 96% recovery). The combination of TOC and single particle extinction and scattering (SPES) measurements allowed the tracking and quantification of three different populations of PS particles in a mixture (200, 500, and 1000 nm) during successive centrifugation steps (113.8 ± 13.9% cumulative recovery). Finally, this study demonstrated the suitability of TOC for determining both the absolute and relative recoveries of polymer-based particulate materials after AF4 fractionation in line with ISO standards. Liquid-based TOC proved to be a valuable tool for directly tracking, quantifying, and evaluating the recovery of polymer-based micro- and nanoparticles in model and environmental water samples before and after routine size-based fractionation steps.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"2983-2996"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12103321/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-025-05812-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The assessment of analyte recovery during sample preparation is a critical quality control parameter in method development. While elemental mass spectrometry techniques, such as ICP-MS, are very effective for assessing the recovery of particulate materials containing metallic elements, there is no equivalent applicable to metal-free carbon or CHNO-based particulate polymer materials. Vibrational spectro-microscopy or thermo-analytical techniques can be used to quantify polymer-based micro- and nanoparticles, but are typically expensive and time-consuming techniques that require higher levels of expertise. This study investigated the potential of a liquid-based total organic carbon (TOC) analyzer as a simple, cost-effective, and universal method for determining the recovery of polymer-based particulate micro- and nanomaterials following filtration, centrifugation, and asymmetric flow field flow fractionation (AF4) processes. A good correlation between solid contents and TOC analysis was demonstrated for standard polystyrene (PS) particle suspensions of various sizes, ranging from 50 nm to 90 μm (79.2 to 113.6% recovery), and other types of synthetic and natural polymeric particle suspensions, including polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyethylene terephthalate (PET), and cellulose (86.2 to 126.2% recovery). Liquid-based TOC was then successfully applied to estimate particle recovery after various preparatory and fractionation steps, including the determination of filtration recoveries for nanocellulose suspensions (99.0 to 101.4% recovery) and PS micro- and nanoparticles spiked into environmental lake and river freshwater samples (70 to 96% recovery). The combination of TOC and single particle extinction and scattering (SPES) measurements allowed the tracking and quantification of three different populations of PS particles in a mixture (200, 500, and 1000 nm) during successive centrifugation steps (113.8 ± 13.9% cumulative recovery). Finally, this study demonstrated the suitability of TOC for determining both the absolute and relative recoveries of polymer-based particulate materials after AF4 fractionation in line with ISO standards. Liquid-based TOC proved to be a valuable tool for directly tracking, quantifying, and evaluating the recovery of polymer-based micro- and nanoparticles in model and environmental water samples before and after routine size-based fractionation steps.
期刊介绍:
Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.