Yue Qing, Ke Jiang, Hua Jiang, Yaru Zhao, Chu-Hu Lai, Alexandra Aicher, Zonghai Li, Christopher Heeschen
{"title":"CLDN18.2 CAR-derived Extracellular Vesicle Immunotherapy Improves Outcome in Murine Pancreatic Cancer.","authors":"Yue Qing, Ke Jiang, Hua Jiang, Yaru Zhao, Chu-Hu Lai, Alexandra Aicher, Zonghai Li, Christopher Heeschen","doi":"10.1002/adhm.202500546","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies, with no current effective treatment options. Chimeric antigen receptor (CAR) T cell therapy represents a powerful immunotherapeutic approach but faces major limitations in PDAC due to complex manufacturing and reduces efficacy within the highly immunosuppressive tumor microenvironment (TME). Small extracellular vesicles (sEVs) derived from CAR-T cells present a novel strategy to address these challenges. Here, CLDN18.2 CAR-T cells are used to generate CAR-sEVs via ultracentrifugation. The purified CAR-sEVs exhibit typical sEV size and morphology, containing established sEV markers, and carry functional CAR proteins along with cytotoxic molecules such as granzyme B. In vitro, CAR-sEVs displays potent cytotoxic activity against murine CLDN18.2<sup>+</sup> PDAC cells, whereas no significant effects are observed in CLDN18.2<sup>-</sup> non-transformed cells. In an aggressive orthotopic murine PDAC model, CAR-sEV administration reduces tumor growth as measured by bioluminescence imaging and significantly extends survival. Notably, CAR-sEVs also significantly prolong survival compared to treatment with conventional CLDN18.2-targeting CAR-T cells, further supporting their therapeutic potential. Moreover, unlike CAR-T cells, CAR-sEVs do not induce systemic IL-6 release in vivo. These findings position CLDN18.2 CAR-sEVs as a promising therapeutic modality for PDAC, offering an innovative and potentially safer platform for solid tumor immunotherapy.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2500546"},"PeriodicalIF":10.0000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202500546","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies, with no current effective treatment options. Chimeric antigen receptor (CAR) T cell therapy represents a powerful immunotherapeutic approach but faces major limitations in PDAC due to complex manufacturing and reduces efficacy within the highly immunosuppressive tumor microenvironment (TME). Small extracellular vesicles (sEVs) derived from CAR-T cells present a novel strategy to address these challenges. Here, CLDN18.2 CAR-T cells are used to generate CAR-sEVs via ultracentrifugation. The purified CAR-sEVs exhibit typical sEV size and morphology, containing established sEV markers, and carry functional CAR proteins along with cytotoxic molecules such as granzyme B. In vitro, CAR-sEVs displays potent cytotoxic activity against murine CLDN18.2+ PDAC cells, whereas no significant effects are observed in CLDN18.2- non-transformed cells. In an aggressive orthotopic murine PDAC model, CAR-sEV administration reduces tumor growth as measured by bioluminescence imaging and significantly extends survival. Notably, CAR-sEVs also significantly prolong survival compared to treatment with conventional CLDN18.2-targeting CAR-T cells, further supporting their therapeutic potential. Moreover, unlike CAR-T cells, CAR-sEVs do not induce systemic IL-6 release in vivo. These findings position CLDN18.2 CAR-sEVs as a promising therapeutic modality for PDAC, offering an innovative and potentially safer platform for solid tumor immunotherapy.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.