Zachary Benmamoun , Thomas Kinard , Prem Chandar , Joe Jankolovits , William A. Ducker
{"title":"Effect of Salt on Synthetic Cationic Antimicrobial Polymer–Cell Interactions","authors":"Zachary Benmamoun , Thomas Kinard , Prem Chandar , Joe Jankolovits , William A. Ducker","doi":"10.1021/acs.biomac.4c01706","DOIUrl":null,"url":null,"abstract":"<div><div>Cationic antiseptics are deployed in a variety of settings, where salinity ranges from almost pure water to hypertonic salt. Here, we examine how dissolved NaCl affects the antimicrobial action of a model antimicrobial, polydiallyldimethylammonium chloride (PDADMAC) to the bacterium Escherichia coli (E. coli). Fluorescence microscopy is used to measure the time course of both the adsorption of PDADMAC to E. coli and the cell viability. NaCl decreases the density of adsorbed PDADMAC and diminishes its efficacy. At NaCl concentrations at or above 0.15 M, PDADMAC no longer kills bacteria but still prevents reproduction by halting the growth in cell length. Reproduction can be restarted if PDADMAC is removed. Fluorescence depolarization measurements show that PDADMAC rigidifies model membranes, but salt reduces the rigidity. We therefore attribute the halt in cell growth to reversible bridging by the polymer on the cell surface that prevents expansion of the cell membrane.</div></div><div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (207KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"26 6","pages":"Pages 3322-3330"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1525779725002326","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cationic antiseptics are deployed in a variety of settings, where salinity ranges from almost pure water to hypertonic salt. Here, we examine how dissolved NaCl affects the antimicrobial action of a model antimicrobial, polydiallyldimethylammonium chloride (PDADMAC) to the bacterium Escherichia coli (E. coli). Fluorescence microscopy is used to measure the time course of both the adsorption of PDADMAC to E. coli and the cell viability. NaCl decreases the density of adsorbed PDADMAC and diminishes its efficacy. At NaCl concentrations at or above 0.15 M, PDADMAC no longer kills bacteria but still prevents reproduction by halting the growth in cell length. Reproduction can be restarted if PDADMAC is removed. Fluorescence depolarization measurements show that PDADMAC rigidifies model membranes, but salt reduces the rigidity. We therefore attribute the halt in cell growth to reversible bridging by the polymer on the cell surface that prevents expansion of the cell membrane.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.