Effect of Salt on Synthetic Cationic Antimicrobial Polymer–Cell Interactions

IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Zachary Benmamoun , Thomas Kinard , Prem Chandar , Joe Jankolovits , William A. Ducker
{"title":"Effect of Salt on Synthetic Cationic Antimicrobial Polymer–Cell Interactions","authors":"Zachary Benmamoun ,&nbsp;Thomas Kinard ,&nbsp;Prem Chandar ,&nbsp;Joe Jankolovits ,&nbsp;William A. Ducker","doi":"10.1021/acs.biomac.4c01706","DOIUrl":null,"url":null,"abstract":"<div><div>Cationic antiseptics are deployed in a variety of settings, where salinity ranges from almost pure water to hypertonic salt. Here, we examine how dissolved NaCl affects the antimicrobial action of a model antimicrobial, polydiallyldimethylammonium chloride (PDADMAC) to the bacterium Escherichia coli (E. coli). Fluorescence microscopy is used to measure the time course of both the adsorption of PDADMAC to E. coli and the cell viability. NaCl decreases the density of adsorbed PDADMAC and diminishes its efficacy. At NaCl concentrations at or above 0.15 M, PDADMAC no longer kills bacteria but still prevents reproduction by halting the growth in cell length. Reproduction can be restarted if PDADMAC is removed. Fluorescence depolarization measurements show that PDADMAC rigidifies model membranes, but salt reduces the rigidity. We therefore attribute the halt in cell growth to reversible bridging by the polymer on the cell surface that prevents expansion of the cell membrane.</div></div><div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (207KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"26 6","pages":"Pages 3322-3330"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1525779725002326","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cationic antiseptics are deployed in a variety of settings, where salinity ranges from almost pure water to hypertonic salt. Here, we examine how dissolved NaCl affects the antimicrobial action of a model antimicrobial, polydiallyldimethylammonium chloride (PDADMAC) to the bacterium Escherichia coli (E. coli). Fluorescence microscopy is used to measure the time course of both the adsorption of PDADMAC to E. coli and the cell viability. NaCl decreases the density of adsorbed PDADMAC and diminishes its efficacy. At NaCl concentrations at or above 0.15 M, PDADMAC no longer kills bacteria but still prevents reproduction by halting the growth in cell length. Reproduction can be restarted if PDADMAC is removed. Fluorescence depolarization measurements show that PDADMAC rigidifies model membranes, but salt reduces the rigidity. We therefore attribute the halt in cell growth to reversible bridging by the polymer on the cell surface that prevents expansion of the cell membrane.
  1. Download: Download high-res image (207KB)
  2. Download: Download full-size image
盐对合成阳离子抗菌聚合物-细胞相互作用的影响。
阳离子防腐剂适用于各种环境,盐度范围从几乎纯净水到高渗盐。在这里,我们研究了溶解的NaCl如何影响模型抗菌剂聚二烯基二甲基氯化铵(PDADMAC)对大肠杆菌(E. coli)的抗菌作用。荧光显微镜测定了PDADMAC对大肠杆菌吸附的时间过程和细胞活力。NaCl降低了PDADMAC吸附的密度,降低了其吸附效果。当NaCl浓度达到或高于0.15 M时,PDADMAC不再杀死细菌,但仍然通过阻止细胞长度的增长来阻止繁殖。如果删除PDADMAC,则可以重新启动复制。荧光去极化测量表明,PDADMAC使模型膜硬化,但盐降低了刚性。因此,我们将细胞生长的停止归因于细胞表面聚合物的可逆桥接,这阻止了细胞膜的膨胀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信