{"title":"Hybrid Biological Hydrogel Provides Favorable Bioenergetic, Adhesive, and Antioxidative Effects on Wound Healing.","authors":"Xinyi Zhang, Zhijuan Hu, Ralf Pörtner, An-Ping Zeng","doi":"10.1021/acsbiomaterials.5c00072","DOIUrl":null,"url":null,"abstract":"<p><p>Wound healing is a dynamic and complex process that demands substantial energy expenditure and a biomimetic microenvironment. Developing a simple and effective biological hydrogel to enhance mitochondrial energy metabolism could effectively promote wound healing. To this end, we developed a hybrid biological hydrogel based on <i>Escherichia coli</i> lipoate protein ligase A (LplA), which combines its catalytic and self-assembling properties to promote wound healing. In murine fibroblast L929 cell models, LplA significantly enhances cellular activity and intracellular metabolism, promoting cell proliferation and energy supply. However, cells aggregated into spherical clusters on the pure LplA hydrogel. To address this issue, we integrated glutaraldehyde (GA) as a cross-linker into the LplA hydrogel. The GA-LplA hydrogel enhances cell adhesion and proliferation and, unexpectedly, exhibits higher catalytic activity compared with the pure LplA hydrogel. Furthermore, LplA was observed to decompose H<sub>2</sub>O<sub>2</sub>, and the GA-LplA hybrid hydrogel significantly reduced reactive oxygen species (ROS) production. The promise of this hybrid hydrogel is successfully demonstrated in a male mice full-thickness skin defect model with accelerated re-epithelialization and cell proliferation while reducing inflammation.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.5c00072","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Wound healing is a dynamic and complex process that demands substantial energy expenditure and a biomimetic microenvironment. Developing a simple and effective biological hydrogel to enhance mitochondrial energy metabolism could effectively promote wound healing. To this end, we developed a hybrid biological hydrogel based on Escherichia coli lipoate protein ligase A (LplA), which combines its catalytic and self-assembling properties to promote wound healing. In murine fibroblast L929 cell models, LplA significantly enhances cellular activity and intracellular metabolism, promoting cell proliferation and energy supply. However, cells aggregated into spherical clusters on the pure LplA hydrogel. To address this issue, we integrated glutaraldehyde (GA) as a cross-linker into the LplA hydrogel. The GA-LplA hydrogel enhances cell adhesion and proliferation and, unexpectedly, exhibits higher catalytic activity compared with the pure LplA hydrogel. Furthermore, LplA was observed to decompose H2O2, and the GA-LplA hybrid hydrogel significantly reduced reactive oxygen species (ROS) production. The promise of this hybrid hydrogel is successfully demonstrated in a male mice full-thickness skin defect model with accelerated re-epithelialization and cell proliferation while reducing inflammation.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture