High-Sensitivity Solution-Processed Organic Phototransistor Based on a Bulk Heterojunction with a Persistent Radical as the Electron Acceptor.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
ACS Applied Electronic Materials Pub Date : 2025-04-23 eCollection Date: 2025-05-13 DOI:10.1021/acsaelm.4c02334
Giulia Baroni, Francesco Reginato, Sara Mattiello, Salvatore Moschetto, Mario Prosa, Margherita Bolognesi, Luca Beverina, Stefano Toffanin
{"title":"High-Sensitivity Solution-Processed Organic Phototransistor Based on a Bulk Heterojunction with a Persistent Radical as the Electron Acceptor.","authors":"Giulia Baroni, Francesco Reginato, Sara Mattiello, Salvatore Moschetto, Mario Prosa, Margherita Bolognesi, Luca Beverina, Stefano Toffanin","doi":"10.1021/acsaelm.4c02334","DOIUrl":null,"url":null,"abstract":"<p><p>In bilayer organic phototransistors (OPTs), charge transport and light-sensing functionalities are separately performed and optimized in two different layers. For optimizing the sensitivity of solution-processed bilayer OPTs, the approach of using a donor-acceptor bulk heterojunction (BHJ) as the light-sensing layer is well established in the literature, but the choice of the electron-accepting materials is often limited to fullerene-soluble derivatives or to standard nonfullerene acceptors. Herein, we report the unprecedented use of an organic persistent radical as an electron acceptor in the BHJ light-sensing layer of solution-processed bilayer OPTs. The radical acceptor is coupled at different donor:acceptor ratios to a low-band-gap polymer that absorbs in the near-infrared (NIR) region. At a donor:acceptor ratio of 1:3, the organic radical forms isolated domains within the BHJ. Such a morphology, coupled with the strong electron-accepting characteristics of the radical, leads to efficient trapping of electrons and efficient hole transport within the BHJ, as measured in charge-selective devices operated in the space-charge limited current (SCLC) range. This, together with the chemical and photostability of the persistent radical, allows us to obtain an OPT with photosensitivity (<i>P</i>) of 1 × 10<sup>5</sup> in response to NIR irradiation at 2 mW/cm<sup>2</sup> and excellent photostability over time.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"7 9","pages":"3694-3703"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12080257/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsaelm.4c02334","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/13 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In bilayer organic phototransistors (OPTs), charge transport and light-sensing functionalities are separately performed and optimized in two different layers. For optimizing the sensitivity of solution-processed bilayer OPTs, the approach of using a donor-acceptor bulk heterojunction (BHJ) as the light-sensing layer is well established in the literature, but the choice of the electron-accepting materials is often limited to fullerene-soluble derivatives or to standard nonfullerene acceptors. Herein, we report the unprecedented use of an organic persistent radical as an electron acceptor in the BHJ light-sensing layer of solution-processed bilayer OPTs. The radical acceptor is coupled at different donor:acceptor ratios to a low-band-gap polymer that absorbs in the near-infrared (NIR) region. At a donor:acceptor ratio of 1:3, the organic radical forms isolated domains within the BHJ. Such a morphology, coupled with the strong electron-accepting characteristics of the radical, leads to efficient trapping of electrons and efficient hole transport within the BHJ, as measured in charge-selective devices operated in the space-charge limited current (SCLC) range. This, together with the chemical and photostability of the persistent radical, allows us to obtain an OPT with photosensitivity (P) of 1 × 105 in response to NIR irradiation at 2 mW/cm2 and excellent photostability over time.

以持久自由基为电子受体的体异质结为基础的高灵敏度溶液处理有机光电晶体管。
在双层有机光电晶体管(OPTs)中,电荷传输和光传感功能在两个不同的层中分别执行和优化。为了优化溶液处理双层OPTs的灵敏度,文献中已经建立了使用供体-受体体异质结(BHJ)作为光感层的方法,但电子接受材料的选择通常仅限于富勒烯可溶性衍生物或标准的非富勒烯受体。在此,我们报道了在溶液处理的双层OPTs的BHJ光感层中前所未有地使用有机持久性自由基作为电子受体。自由基受体以不同的供体:受体比例偶联到低带隙聚合物,在近红外(NIR)区域吸收。在供体:受体比例为1:3时,有机自由基在BHJ内形成孤立的结构域。在空间电荷限制电流(SCLC)范围内运行的电荷选择器件中测量到,这种形态加上自由基的强电子接受特性,导致了BHJ内有效的电子捕获和有效的空穴传输。这一点,再加上持久性自由基的化学和光稳定性,使我们能够在2 mW/cm2的近红外辐射下获得光敏性(P)为1 × 105的OPT,并且随着时间的推移具有优异的光稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信