{"title":"Linearformer: Tri-Net Multi-Layer DVF Medical Image Registration","authors":"Muhammad Anwar, Zhiyue Yan, Wenming Cao","doi":"10.1111/exsy.70077","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In medical imaging, accurate registration is crucial for reliable analysis. While transformer models demonstrate potential, their application to large datasets like OASIS is constrained by substantial memory requirements, quadratic complexity and the challenge of managing complex deformations. To overcome these challenges, Linearformer is introduced, an efficient transformer-based model with Linear-ProbSparse self-attention for optimised time and memory, along with TNM DVF, a Pyramid-based framework for unsupervised non-rigid registration. Evaluated on OASIS and LPBA40 brain MRI datasets, the model outperforms state-of-the-art methods in Dice score and Jacobian metrics, surpassing TransMatch by 0.6% and 1.9% on the two datasets while maintaining a comparable voxel folding percentage.</p>\n </div>","PeriodicalId":51053,"journal":{"name":"Expert Systems","volume":"42 7","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/exsy.70077","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In medical imaging, accurate registration is crucial for reliable analysis. While transformer models demonstrate potential, their application to large datasets like OASIS is constrained by substantial memory requirements, quadratic complexity and the challenge of managing complex deformations. To overcome these challenges, Linearformer is introduced, an efficient transformer-based model with Linear-ProbSparse self-attention for optimised time and memory, along with TNM DVF, a Pyramid-based framework for unsupervised non-rigid registration. Evaluated on OASIS and LPBA40 brain MRI datasets, the model outperforms state-of-the-art methods in Dice score and Jacobian metrics, surpassing TransMatch by 0.6% and 1.9% on the two datasets while maintaining a comparable voxel folding percentage.
期刊介绍:
Expert Systems: The Journal of Knowledge Engineering publishes papers dealing with all aspects of knowledge engineering, including individual methods and techniques in knowledge acquisition and representation, and their application in the construction of systems – including expert systems – based thereon. Detailed scientific evaluation is an essential part of any paper.
As well as traditional application areas, such as Software and Requirements Engineering, Human-Computer Interaction, and Artificial Intelligence, we are aiming at the new and growing markets for these technologies, such as Business, Economy, Market Research, and Medical and Health Care. The shift towards this new focus will be marked by a series of special issues covering hot and emergent topics.