Spatial Shifting of Biocondensate Assembly Zone in a Microfluidic Gradient of Dissipative Condition

IF 3.1 Q2 CHEMISTRY, MULTIDISCIPLINARY
Sakshi Juneja, Neetu Sivoria, Subhabrata Maiti
{"title":"Spatial Shifting of Biocondensate Assembly Zone in a Microfluidic Gradient of Dissipative Condition","authors":"Sakshi Juneja,&nbsp;Neetu Sivoria,&nbsp;Subhabrata Maiti","doi":"10.1002/syst.202400084","DOIUrl":null,"url":null,"abstract":"<p>Pursuing non-equilibrium chemistry with (bio)molecules is of utmost importance for the design of life-like dynamic materials that emerge in a constant flux of energy. Herein, we explore spatial localization of dissipative self-assembly of biocondensate (DNA-histone) via passing chemical fuel (histone) and one fuel-degrading agent (trypsin) through two arms of the Y-shaped microfluidic chip. In this case, a continuous supply of fuel and fuel-degrading agent results self-assembly of biocondensate, maintaining a non-equilibrium steady state (NESS). We find in the presence of gradient of dissipating conditions, the formation zone of biocondensate drifts towards fuel-rich zone (away from dissipating zone). In absence of fuel-degrading agent, diffusive transport of free DNA towards histone channel (perpendicular to advection) is restricted as it formed much larger micron-sized biocondensate at the center of the channel (the meeting point of two flows). However, this sidewise DNA diffusion is operative in the presence of fuel-degrading agent and therefore, the formation zone shifted to histone-rich zone. Furthermore, we demonstrate that in the presence of trypsin, catalytic DNA's peroxidase reactivity can be moved to histone-rich region. Transposition of self-assembly process in a gradient of dissipative conditions will be of importance in the development of spatially-controlled chemistry, reaction-diffusion processes.</p>","PeriodicalId":72566,"journal":{"name":"ChemSystemsChem","volume":"7 3","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSystemsChem","FirstCategoryId":"1085","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/syst.202400084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Pursuing non-equilibrium chemistry with (bio)molecules is of utmost importance for the design of life-like dynamic materials that emerge in a constant flux of energy. Herein, we explore spatial localization of dissipative self-assembly of biocondensate (DNA-histone) via passing chemical fuel (histone) and one fuel-degrading agent (trypsin) through two arms of the Y-shaped microfluidic chip. In this case, a continuous supply of fuel and fuel-degrading agent results self-assembly of biocondensate, maintaining a non-equilibrium steady state (NESS). We find in the presence of gradient of dissipating conditions, the formation zone of biocondensate drifts towards fuel-rich zone (away from dissipating zone). In absence of fuel-degrading agent, diffusive transport of free DNA towards histone channel (perpendicular to advection) is restricted as it formed much larger micron-sized biocondensate at the center of the channel (the meeting point of two flows). However, this sidewise DNA diffusion is operative in the presence of fuel-degrading agent and therefore, the formation zone shifted to histone-rich zone. Furthermore, we demonstrate that in the presence of trypsin, catalytic DNA's peroxidase reactivity can be moved to histone-rich region. Transposition of self-assembly process in a gradient of dissipative conditions will be of importance in the development of spatially-controlled chemistry, reaction-diffusion processes.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

耗散条件下微流体梯度下生物凝析液聚集区的空间移动
追求(生物)分子的非平衡化学对于设计在恒定能量流中出现的类生命动态材料至关重要。在此,我们通过y形微流控芯片的两个臂传递化学燃料(组蛋白)和一种燃料降解剂(胰蛋白酶),探索生物凝聚物(dna -组蛋白)耗散自组装的空间定位。在这种情况下,燃料和燃料降解剂的持续供应导致生物凝析液的自组装,保持非平衡稳态(NESS)。我们发现,在耗散条件梯度存在的情况下,生物凝析油的形成区向富燃料区漂移(远离耗散区)。在没有燃料降解剂的情况下,自由DNA向组蛋白通道(垂直于平流)的扩散运输受到限制,因为它在通道中心(两股流动的交汇点)形成了更大的微米级生物凝聚物。然而,这种侧向的DNA扩散在燃料降解剂的存在下是有效的,因此,形成区转移到富组蛋白区。此外,我们证明,在胰蛋白酶的存在下,催化DNA的过氧化物酶反应活性可以移动到富含组蛋白的区域。自组装过程在梯度耗散条件下的转换对空间控制化学、反应扩散过程的发展具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信