Nonlocal-to-local convergence for a Cahn–Hilliard tumor growth model

Q1 Mathematics
Christoph Hurm, Maximilian Moser
{"title":"Nonlocal-to-local convergence for a Cahn–Hilliard tumor growth model","authors":"Christoph Hurm,&nbsp;Maximilian Moser","doi":"10.1002/gamm.70003","DOIUrl":null,"url":null,"abstract":"<p>We consider a local Cahn–Hilliard-type model for tumor growth as well as a nonlocal model where, compared to the local system, the Laplacian in the equation for the chemical potential is replaced by a nonlocal operator. The latter is defined as a convolution integral with suitable kernels parametrized by a small parameter. For sufficiently smooth bounded domains in three dimensions, we prove convergence of weak solutions of the nonlocal model toward strong solutions of the local model together with convergence rates with respect to the small parameter. The proof is done via a Gronwall-type argument and a convergence result with rates for the nonlocal integral operator toward the Laplacian due to Abels and Hurm.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"48 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gamm.70003","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GAMM Mitteilungen","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gamm.70003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a local Cahn–Hilliard-type model for tumor growth as well as a nonlocal model where, compared to the local system, the Laplacian in the equation for the chemical potential is replaced by a nonlocal operator. The latter is defined as a convolution integral with suitable kernels parametrized by a small parameter. For sufficiently smooth bounded domains in three dimensions, we prove convergence of weak solutions of the nonlocal model toward strong solutions of the local model together with convergence rates with respect to the small parameter. The proof is done via a Gronwall-type argument and a convergence result with rates for the nonlocal integral operator toward the Laplacian due to Abels and Hurm.

Cahn-Hilliard肿瘤生长模型的非局部到局部收敛性
我们考虑肿瘤生长的局部cahn - hilliard型模型以及非局部模型,其中与局部系统相比,化学势方程中的拉普拉斯算子被非局部算子取代。后者被定义为用一个小参数参数化合适核的卷积积分。对于三维足够光滑的有界区域,我们证明了非局部模型弱解向局部模型强解的收敛性以及对小参数的收敛率。通过一个gronwall型的论证和一个由Abels和Hurm引起的非局部积分算子向拉普拉斯算子的带速率的收敛结果来证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
GAMM Mitteilungen
GAMM Mitteilungen Mathematics-Applied Mathematics
CiteScore
8.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信