{"title":"Constraining Kilometer-Scale Mountain Snow Transport and Snowshed Areas","authors":"E. N. Boardman","doi":"10.1029/2024GL113599","DOIUrl":null,"url":null,"abstract":"<p>Snow transport (wind drifting and avalanches) can concentrate a large amount of water into a relatively small area, in contrast to precipitation, which is spatially smoother. I develop a framework to constrain the minimum effective seasonal transport necessary to explain observed snowpack patterns. In the Wind River Range, Wyoming, extensive deep snow (4–6 m snow water equivalent, >0.01 km<sup>2</sup>) is the result of long-distance transport, with about half of the seasonal accumulation originating >1 km upwind. Cirque glaciers on the downwind margins of alpine plateaus can accumulate snow from contributing source areas exceeding 2–3 km<sup>2</sup>. Interbasin snow transport augments local snowfall by at least 22% in a glaciated first-order stream catchment (2 km<sup>2</sup>), with the upwind “snowshed” doubling the effective catchment area. Snow imported across topographic divides is equivalent to 7% of annual streamflow in a 125 km<sup>2</sup> watershed. Kilometer-scale snow transport is an underappreciated driver of mountain snowpack heterogeneity.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 10","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL113599","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL113599","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Snow transport (wind drifting and avalanches) can concentrate a large amount of water into a relatively small area, in contrast to precipitation, which is spatially smoother. I develop a framework to constrain the minimum effective seasonal transport necessary to explain observed snowpack patterns. In the Wind River Range, Wyoming, extensive deep snow (4–6 m snow water equivalent, >0.01 km2) is the result of long-distance transport, with about half of the seasonal accumulation originating >1 km upwind. Cirque glaciers on the downwind margins of alpine plateaus can accumulate snow from contributing source areas exceeding 2–3 km2. Interbasin snow transport augments local snowfall by at least 22% in a glaciated first-order stream catchment (2 km2), with the upwind “snowshed” doubling the effective catchment area. Snow imported across topographic divides is equivalent to 7% of annual streamflow in a 125 km2 watershed. Kilometer-scale snow transport is an underappreciated driver of mountain snowpack heterogeneity.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.