Biosynthesis of silver nanoparticles using Pterorhachis zenkeri: characterization and evaluation of antioxidant, anti-apoptotic, and androgenic properties in TM3 leydig cells exposed to cyclophosphamide
{"title":"Biosynthesis of silver nanoparticles using Pterorhachis zenkeri: characterization and evaluation of antioxidant, anti-apoptotic, and androgenic properties in TM3 leydig cells exposed to cyclophosphamide","authors":"Patrick Brice Defo Deeh, Nagabhishek Sirpu Natesh, Karthik Alagarsamy, Madan Kumar Arumugam, Ramachandran Dasnamoorthy, Tharunkumar Sivaji, Vinita Vishwakarma","doi":"10.1007/s13596-024-00792-9","DOIUrl":null,"url":null,"abstract":"<div><p>We fabricated silver nanoparticles (AgNPs) using <i>Pterorhachis zenkeri</i>, characterized by Atomic Force Microscopy (AFM) and determined their antioxidant potentials in vitro. Results confirmed the fabrication of AgNPs by using <i>P. zenkeri</i> as a bioreducing agent for the first time. AgNPs possessed potent antioxidant activity <i>in vitro.</i> Furthermore, the TM3 cells were treated for 24 h with AgNPs, vitamin E and cyclophosphamide (CP) at different concentrations (25, 50, 100, 250 and 500 µg/ml). The cells morphology, apoptosis, mitochondrial membrane depolarisation (MMD), Reactive Oxygen Species (ROS), caspase 3/9, oxidative stress-related enzymes, testosterone, and the mRNA expression of steroidogenic acute regulatory protein (StAR) were measured. Results revealed that AgNPs, vitamin E and CP decreased the cell viability in a dose-dependent manner, but did not affect the TM3 cells morphology after treatment. The cytotoxicity of CP in TM3 cells was alleviated after AgNPs application. For instance, AgNPs significantly (<i>p</i> < 0.001–0.05) reduced the MMD, ROS production, and caspase 3/9 activities, but increased the activities of superoxide dismutase, catalase and glutathione peroxidase in the TM3 cells. Moreover, AgNPs improved testosterone production by activating StAR machineries. These results indicate that AgNPs/<i>P. zenkeri</i> could be a potential alternative drug in the management of oxidative stress and androgen deficit associated with CP chemotherapy.</p></div>","PeriodicalId":7613,"journal":{"name":"Advances in Traditional Medicine","volume":"25 2","pages":"495 - 508"},"PeriodicalIF":1.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Traditional Medicine","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13596-024-00792-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
We fabricated silver nanoparticles (AgNPs) using Pterorhachis zenkeri, characterized by Atomic Force Microscopy (AFM) and determined their antioxidant potentials in vitro. Results confirmed the fabrication of AgNPs by using P. zenkeri as a bioreducing agent for the first time. AgNPs possessed potent antioxidant activity in vitro. Furthermore, the TM3 cells were treated for 24 h with AgNPs, vitamin E and cyclophosphamide (CP) at different concentrations (25, 50, 100, 250 and 500 µg/ml). The cells morphology, apoptosis, mitochondrial membrane depolarisation (MMD), Reactive Oxygen Species (ROS), caspase 3/9, oxidative stress-related enzymes, testosterone, and the mRNA expression of steroidogenic acute regulatory protein (StAR) were measured. Results revealed that AgNPs, vitamin E and CP decreased the cell viability in a dose-dependent manner, but did not affect the TM3 cells morphology after treatment. The cytotoxicity of CP in TM3 cells was alleviated after AgNPs application. For instance, AgNPs significantly (p < 0.001–0.05) reduced the MMD, ROS production, and caspase 3/9 activities, but increased the activities of superoxide dismutase, catalase and glutathione peroxidase in the TM3 cells. Moreover, AgNPs improved testosterone production by activating StAR machineries. These results indicate that AgNPs/P. zenkeri could be a potential alternative drug in the management of oxidative stress and androgen deficit associated with CP chemotherapy.
期刊介绍:
Advances in Traditional Medicine (ADTM) is an international and peer-reviewed journal and publishes a variety of articles including original researches, reviews, short communications, and case-reports. ADTM aims to bridging the gap between Traditional knowledge and medical advances. The journal focuses on publishing valid, relevant, and rigorous experimental research and clinical applications of Traditidnal Medicine as well as medical classics. At the same time, the journal is devoted to communication among basic researcher and medical clinician interested in the advancement of Traditional Medicine. Topics covered by the journal are: Medical Classics & History; Biomedical Research; Pharmacology & Toxicology of Natural Products; Acupuncture & Moxibustion; Sasang Constitutional Medicine; Diagnostics and Instrumental Development; Clinical Research. ADTM is published four times yearly. The publication date of this journal is 30th March, June, September, and December.