{"title":"Arsenic-induced neurocardiac toxicity and protective role of Resveratrol: histopathological and molecular insights","authors":"Saroj, Kamakshi Mehta, Kamlesh Kumar Pandey, Balpreet Kaur, Saroj Kaler, Pushpa Dhar","doi":"10.1007/s10735-025-10439-x","DOIUrl":null,"url":null,"abstract":"<div><p>Arsenic toxicity is a global health problem chiefly targeting soft tissues of the body like the brain and heart. The major mechanism underlying arsenic-induced neurotoxicity is oxidative stress. Particularly, the neurons and cardiac myocytes show limitless susceptibility to oxidative stress. Herein, we examined the impact of prolonged arsenic exposure and resveratrol post-treatment on the cardiac and neuronal [Ventromedial hypothalamic nucleus (VMH)] morphology. Adult mice were segregated into control and experimental groups; controls received distilled water, while experimental groups received oral gavage of arsenic trioxide (ATO) at low (2 mg/kg bw) or high (4 mg/kg bw) doses for 45 days. Cardiac effects were assessed at the low dose (2 mg/kg bw), whereas neurological effects were evaluated at both low and high doses. Mice were sacrificed on day 45 to obtain perfusion-fixed hearts and brains for histological and morphometric studies. Long-term ATO exposure resulted in a higher heart-to-body weight ratio than controls, suggesting ATO-induced hypertrophy. Microscopic observations revealed a regular arrangement of cardiac muscle fibres, branching patterns of cardiomyocytes, and fibroblasts across all the treatment groups. However, increased cardiac myocyte diameter in ventricles and substantial fibrosis in vessel walls were noticed in ATO-alone exposed hearts relative to controls. Selective vulnerability of hypothalamic neurons following ATO exposure was evident by significant alterations in morphometric parameters (reduced cell density and soma size) in the VMH nucleus of animals receiving ATO (2 and 4 mg/kg) alone. These dramatic histopathological alterations were found to be restored after ATO + <i>Res</i> co-treatment. We also examined the expression of ER-α in the preoptic area of the hypothalamus and indicated downregulation of ER-α due to prolonged ATO exposure. Our findings highlight Resveratrol as a potent neurocardiac protector against ATO toxicity via estrogen signaling modulation, supporting its therapeutic potential in arsenic poisoning.</p></div>","PeriodicalId":650,"journal":{"name":"Journal of Molecular Histology","volume":"56 3","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Histology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10735-025-10439-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Arsenic toxicity is a global health problem chiefly targeting soft tissues of the body like the brain and heart. The major mechanism underlying arsenic-induced neurotoxicity is oxidative stress. Particularly, the neurons and cardiac myocytes show limitless susceptibility to oxidative stress. Herein, we examined the impact of prolonged arsenic exposure and resveratrol post-treatment on the cardiac and neuronal [Ventromedial hypothalamic nucleus (VMH)] morphology. Adult mice were segregated into control and experimental groups; controls received distilled water, while experimental groups received oral gavage of arsenic trioxide (ATO) at low (2 mg/kg bw) or high (4 mg/kg bw) doses for 45 days. Cardiac effects were assessed at the low dose (2 mg/kg bw), whereas neurological effects were evaluated at both low and high doses. Mice were sacrificed on day 45 to obtain perfusion-fixed hearts and brains for histological and morphometric studies. Long-term ATO exposure resulted in a higher heart-to-body weight ratio than controls, suggesting ATO-induced hypertrophy. Microscopic observations revealed a regular arrangement of cardiac muscle fibres, branching patterns of cardiomyocytes, and fibroblasts across all the treatment groups. However, increased cardiac myocyte diameter in ventricles and substantial fibrosis in vessel walls were noticed in ATO-alone exposed hearts relative to controls. Selective vulnerability of hypothalamic neurons following ATO exposure was evident by significant alterations in morphometric parameters (reduced cell density and soma size) in the VMH nucleus of animals receiving ATO (2 and 4 mg/kg) alone. These dramatic histopathological alterations were found to be restored after ATO + Res co-treatment. We also examined the expression of ER-α in the preoptic area of the hypothalamus and indicated downregulation of ER-α due to prolonged ATO exposure. Our findings highlight Resveratrol as a potent neurocardiac protector against ATO toxicity via estrogen signaling modulation, supporting its therapeutic potential in arsenic poisoning.
期刊介绍:
The Journal of Molecular Histology publishes results of original research on the localization and expression of molecules in animal cells, tissues and organs. Coverage includes studies describing novel cellular or ultrastructural distributions of molecules which provide insight into biochemical or physiological function, development, histologic structure and disease processes.
Major research themes of particular interest include:
- Cell-Cell and Cell-Matrix Interactions;
- Connective Tissues;
- Development and Disease;
- Neuroscience.
Please note that the Journal of Molecular Histology does not consider manuscripts dealing with the application of immunological or other probes on non-standard laboratory animal models unless the results are clearly of significant and general biological importance.
The Journal of Molecular Histology publishes full-length original research papers, review articles, short communications and letters to the editors. All manuscripts are typically reviewed by two independent referees. The Journal of Molecular Histology is a continuation of The Histochemical Journal.