A review of enhancement of chlorophenol bioremediation using synergistic effects between zero-valent iron and microorganisms

IF 3.1 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Hao Liu, Deli Wu, Weishi Wang
{"title":"A review of enhancement of chlorophenol bioremediation using synergistic effects between zero-valent iron and microorganisms","authors":"Hao Liu,&nbsp;Deli Wu,&nbsp;Weishi Wang","doi":"10.1007/s10532-025-10133-5","DOIUrl":null,"url":null,"abstract":"<div><p>Chlorophenols (CPs) are a class of synthetic organic chemicals that are widely distributed in soil and groundwater, posing significant risks to human health and the environment due to persistence, acute toxicity, and potential carcinogenicity. Zero-valent iron (ZVI) has emerged as a promising remediation technique for CPs, but its efficacy is often hindered by surface passivation, non-target competition, and limited mobility in the subsurface. While CPs are inherently biodegradable, their high toxicity and the lack of functional enzymes in indigenous microbial systems restrict the effectiveness of bioremediation. Recently, a hybrid system integrating ZVI with microbial degradation draws increasingly research interests, paving out a new path for sustainable degradation of CPs. These systems leverage the synergistic interactions between ZVI and microorganisms to enhance CP biodegradation. This review provides a comprehensive analysis of the advancement. Key topics include the enhancement of electron transfer, alterations to microbial communities, mitigation of toxicity, and the interplay between other processes. Operation modes, ZVI dosage, and interactions with naturally occurring iron minerals, are also discussed in the context of applications in soil and groundwater remediation. Despite research efforts and successful implementations, critical knowledge gaps remain, particularly in regard to the characterization of microbial processes in natural systems, highlighting the need for future research.</p></div>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":"36 3","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10532-025-10133-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chlorophenols (CPs) are a class of synthetic organic chemicals that are widely distributed in soil and groundwater, posing significant risks to human health and the environment due to persistence, acute toxicity, and potential carcinogenicity. Zero-valent iron (ZVI) has emerged as a promising remediation technique for CPs, but its efficacy is often hindered by surface passivation, non-target competition, and limited mobility in the subsurface. While CPs are inherently biodegradable, their high toxicity and the lack of functional enzymes in indigenous microbial systems restrict the effectiveness of bioremediation. Recently, a hybrid system integrating ZVI with microbial degradation draws increasingly research interests, paving out a new path for sustainable degradation of CPs. These systems leverage the synergistic interactions between ZVI and microorganisms to enhance CP biodegradation. This review provides a comprehensive analysis of the advancement. Key topics include the enhancement of electron transfer, alterations to microbial communities, mitigation of toxicity, and the interplay between other processes. Operation modes, ZVI dosage, and interactions with naturally occurring iron minerals, are also discussed in the context of applications in soil and groundwater remediation. Despite research efforts and successful implementations, critical knowledge gaps remain, particularly in regard to the characterization of microbial processes in natural systems, highlighting the need for future research.

零价铁与微生物协同增强氯酚生物修复的研究进展
氯酚(CPs)是一类广泛分布于土壤和地下水中的合成有机化学品,由于其持久性、急性毒性和潜在致癌性,对人类健康和环境构成重大风险。零价铁(ZVI)已成为一种很有前途的CPs修复技术,但其效果往往受到表面钝化、非靶标竞争和地下迁移受限的阻碍。虽然CPs本身是可生物降解的,但它们的高毒性和本地微生物系统中缺乏功能酶限制了生物修复的有效性。近年来,将ZVI与微生物降解相结合的混合系统引起了越来越多的研究兴趣,为CPs的可持续降解开辟了新的途径。这些系统利用ZVI和微生物之间的协同相互作用来增强CP的生物降解。本文综述了该领域的研究进展。关键主题包括电子转移的增强、微生物群落的改变、毒性的减轻以及其他过程之间的相互作用。在土壤和地下水修复应用的背景下,还讨论了操作模式、ZVI用量以及与天然铁矿物的相互作用。尽管进行了研究工作并取得了成功,但关键的知识差距仍然存在,特别是在自然系统中微生物过程的表征方面,这突出了未来研究的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biodegradation
Biodegradation 工程技术-生物工程与应用微生物
CiteScore
5.60
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms. Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信