Preparation of NaV6O15/V2CTX composite materials for room-temperature ammonia sensing

IF 2.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Yuanyuan Zhou, Zhe Zhang, Baojie Shi and Jiangwei Ma
{"title":"Preparation of NaV6O15/V2CTX composite materials for room-temperature ammonia sensing","authors":"Yuanyuan Zhou, Zhe Zhang, Baojie Shi and Jiangwei Ma","doi":"10.1039/D5NJ01102G","DOIUrl":null,"url":null,"abstract":"<p >MXenes exhibit promise for room temperature sensing owing to their processability in solution, substantial surface area and minimal resistance. The research on vanadium-based oxides (NaV<small><sub>6</sub></small>O<small><sub>15</sub></small>) has focused on catalytic applications (H<small><sub>2</sub></small>S oxidation) and energy storage (sodium-ion and zinc-ion batteries), showing that NaV<small><sub>6</sub></small>O<small><sub>15</sub></small> possesses structural stability and adjustable chemical properties, which suggests that it is a potential gas sensing material. This study introduces a facile method for synthesizing NaV<small><sub>6</sub></small>O<small><sub>15</sub></small>/V<small><sub>2</sub></small>CT<small><sub><em>X</em></sub></small> composites by calcining V<small><sub>2</sub></small>CT<small><sub><em>X</em></sub></small> MXene precursors in an air atmosphere. The composite material maintains the open layered structure of the V<small><sub>2</sub></small>CT<small><sub><em>X</em></sub></small> MXene precursor. The conductive network of MXene and the chemical reactivity of vanadium oxides were used to improve room-temperature ammonia (NH<small><sub>3</sub></small>) sensing capabilities. Gas sensitivity assessments reveal a response of 2.5% to 100 ppm NH<small><sub>3</sub></small> at room temperature. The response decay was less than 30% over 27 days of continuous testing, demonstrating exceptional long-term stability. This investigation is the first application of NaV<small><sub>6</sub></small>O<small><sub>15</sub></small> in gas sensing applications, offering novel perspectives on the development of low-power, highly durable MXene-based NH<small><sub>3</sub></small> sensors.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 20","pages":" 8361-8367"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d5nj01102g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

MXenes exhibit promise for room temperature sensing owing to their processability in solution, substantial surface area and minimal resistance. The research on vanadium-based oxides (NaV6O15) has focused on catalytic applications (H2S oxidation) and energy storage (sodium-ion and zinc-ion batteries), showing that NaV6O15 possesses structural stability and adjustable chemical properties, which suggests that it is a potential gas sensing material. This study introduces a facile method for synthesizing NaV6O15/V2CTX composites by calcining V2CTX MXene precursors in an air atmosphere. The composite material maintains the open layered structure of the V2CTX MXene precursor. The conductive network of MXene and the chemical reactivity of vanadium oxides were used to improve room-temperature ammonia (NH3) sensing capabilities. Gas sensitivity assessments reveal a response of 2.5% to 100 ppm NH3 at room temperature. The response decay was less than 30% over 27 days of continuous testing, demonstrating exceptional long-term stability. This investigation is the first application of NaV6O15 in gas sensing applications, offering novel perspectives on the development of low-power, highly durable MXene-based NH3 sensors.

室温氨传感用NaV6O15/V2CTX复合材料的制备
由于其在溶液中的可加工性、可观的表面积和最小的电阻,MXenes表现出室温传感的前景。钒基氧化物(NaV6O15)的研究主要集中在催化(H2S氧化)和储能(钠离子和锌离子电池)方面,研究表明NaV6O15具有结构稳定性和可调节的化学性质,是一种潜在的气敏材料。本研究介绍了一种在空气气氛中煅烧V2CTX MXene前驱体合成NaV6O15/V2CTX复合材料的简便方法。复合材料保持了V2CTX MXene前驱体的开放层状结构。利用MXene的导电网络和钒氧化物的化学反应性来提高室温氨(NH3)的传感能力。气体敏感性评估显示,室温下的响应为2.5%至100 ppm NH3。在27天的连续测试中,响应衰减小于30%,表现出优异的长期稳定性。这项研究是NaV6O15在气体传感应用中的首次应用,为开发低功耗、高耐用的基于mxen3的NH3传感器提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信