Study of Low-Area PV Modules Under Indoor Natural Daylight for Autonomous Sensors

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Ferran Reverter
{"title":"Study of Low-Area PV Modules Under Indoor Natural Daylight for Autonomous Sensors","authors":"Ferran Reverter","doi":"10.1109/LSENS.2025.3566120","DOIUrl":null,"url":null,"abstract":"The rise of smart technologies and the Internet of Things has heightened the need for reliable and sustainable power sources. Energy harvesting from the optical domain, using photovoltaic (PV) modules, offers a viable solution, although their response in indoor scenarios has not been systematically evaluated in the literature. In such a context, this letter experimentally studies the performance of low-area PV modules for autonomous sensors under indoor natural daylight. Ten PV modules, involving six different PV technologies, are under test and comparison. Considering these ten PV modules, the units of the III–V group are the most efficient (around 22%) in the range from 1000 to 10 000 lx of indoor natural daylight. Assuming the high cost of this technology, the best alternatives are the perovskite and monocrystalline technologies; the former being better at 1000 lx (with an efficiency of 15%), whereas the latter at 10 000 lx (17%). It is also proven that, for all the PV modules under test and excluding halogen light, 1000 lx of natural daylight generates more power than 1000 lx of artificial lighting.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 6","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10981651/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The rise of smart technologies and the Internet of Things has heightened the need for reliable and sustainable power sources. Energy harvesting from the optical domain, using photovoltaic (PV) modules, offers a viable solution, although their response in indoor scenarios has not been systematically evaluated in the literature. In such a context, this letter experimentally studies the performance of low-area PV modules for autonomous sensors under indoor natural daylight. Ten PV modules, involving six different PV technologies, are under test and comparison. Considering these ten PV modules, the units of the III–V group are the most efficient (around 22%) in the range from 1000 to 10 000 lx of indoor natural daylight. Assuming the high cost of this technology, the best alternatives are the perovskite and monocrystalline technologies; the former being better at 1000 lx (with an efficiency of 15%), whereas the latter at 10 000 lx (17%). It is also proven that, for all the PV modules under test and excluding halogen light, 1000 lx of natural daylight generates more power than 1000 lx of artificial lighting.
自主传感器室内自然光下低面积光伏组件的研究
智能技术和物联网的兴起提高了对可靠和可持续能源的需求。使用光伏(PV)模块从光学领域收集能量提供了一个可行的解决方案,尽管它们在室内场景中的响应尚未在文献中进行系统评估。在这样的背景下,本文通过实验研究了用于自主传感器的低面积光伏模块在室内自然光下的性能。10个光伏组件,涉及6种不同的光伏技术,正在测试和比较中。考虑到这10个光伏组件,III-V组的单元在1000到10000 lx的室内自然光范围内效率最高(约22%)。考虑到该技术的高成本,最好的替代品是钙钛矿和单晶技术;前者在1000 lx时更好(效率为15%),而后者在10000 lx时更好(效率为17%)。实验还证明,对于所有测试的光伏组件,除卤素灯外,1000 lx的自然光产生的功率大于1000 lx的人工照明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信