Optimal LiFePO4 ratios and loadings for LFP-type cathodes with Single-Ion Conducting Polymer Electrolyte (SICPE) membranes based on PBDT/LiFSI/MPPIFSI for lithium-ion batteries+

IF 7.5 Q1 CHEMISTRY, PHYSICAL
Luisa Roxana Mandoc , Amalia Maria Soare , Giorgian Cosmin Ungureanu , Violeta-Carolina Niculescu , Mirela Irina Petreanu , Radu Dorin Andrei , Athanasios Tiliakos
{"title":"Optimal LiFePO4 ratios and loadings for LFP-type cathodes with Single-Ion Conducting Polymer Electrolyte (SICPE) membranes based on PBDT/LiFSI/MPPIFSI for lithium-ion batteries+","authors":"Luisa Roxana Mandoc ,&nbsp;Amalia Maria Soare ,&nbsp;Giorgian Cosmin Ungureanu ,&nbsp;Violeta-Carolina Niculescu ,&nbsp;Mirela Irina Petreanu ,&nbsp;Radu Dorin Andrei ,&nbsp;Athanasios Tiliakos","doi":"10.1016/j.apsadv.2025.100772","DOIUrl":null,"url":null,"abstract":"<div><div>LiFePO<sub>4</sub> composite cathodes based on LFP, carbon black, and PVDF were prepared with different mass percentages and loadings of the active material, and integrated in CR2032 cells using a Single-Ion Conducting Polymer Electrolyte (SICPE) membrane, alternatively known as Solid Molecular Ionic Composite Electrolyte (SMICE), based on a PBDT/LiFSI/MPPIFSI Molecular Ionic Composite (MIC). The assembled Li-ion battery cells were subjected to a series of tests to gauge their performance. The LFP|SMICE cathodes with a compositional ratio of 60 % and a loading of 1.1 mg cm<sup>–2</sup> in active material displayed the optimal performance, reaching 126 mAh g<sup>–1</sup> at the C/10 current rate, and 93 mAh g<sup>–1</sup> at the 1C current rate, presenting a capacity retention of 90.77 % by the end of the 555th cycle. Our work highlights the potential of combining LFP-type cathodes with single-ion conducting polymer electrolytes to increase the stability and performance of lithium-ion batteries while mitigating the safety issues associated with non-solid electrolytes, and determines the loadings and compositional ratios of LFP in the composite cathodes that present the optimal results in conjunction with SMICE.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"27 ","pages":"Article 100772"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523925000807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

LiFePO4 composite cathodes based on LFP, carbon black, and PVDF were prepared with different mass percentages and loadings of the active material, and integrated in CR2032 cells using a Single-Ion Conducting Polymer Electrolyte (SICPE) membrane, alternatively known as Solid Molecular Ionic Composite Electrolyte (SMICE), based on a PBDT/LiFSI/MPPIFSI Molecular Ionic Composite (MIC). The assembled Li-ion battery cells were subjected to a series of tests to gauge their performance. The LFP|SMICE cathodes with a compositional ratio of 60 % and a loading of 1.1 mg cm–2 in active material displayed the optimal performance, reaching 126 mAh g–1 at the C/10 current rate, and 93 mAh g–1 at the 1C current rate, presenting a capacity retention of 90.77 % by the end of the 555th cycle. Our work highlights the potential of combining LFP-type cathodes with single-ion conducting polymer electrolytes to increase the stability and performance of lithium-ion batteries while mitigating the safety issues associated with non-solid electrolytes, and determines the loadings and compositional ratios of LFP in the composite cathodes that present the optimal results in conjunction with SMICE.
基于PBDT/LiFSI/MPPIFSI的锂离子电池单离子导电聚合物电解质(SICPE)膜lfp型阴极的最佳LiFePO4比率和负载
采用PBDT/LiFSI/MPPIFSI分子离子复合材料(MIC)制备了基于LFP、炭黑和PVDF的LiFePO4复合阴极,并使用单离子导电聚合物电解质(SICPE)膜(也称为固体分子离子复合电解质(SMICE))集成在CR2032电池中。组装好的锂离子电池进行了一系列测试,以评估其性能。当活性材料负载量为1.1 mg cm-2时,LFP|SMICE阴极表现出最佳性能,在C/10倍率下达到126 mAh g-1,在1C倍率下达到93 mAh g-1,在555次循环结束时容量保持率为90.77%。我们的工作强调了LFP型阴极与单离子导电聚合物电解质结合的潜力,可以提高锂离子电池的稳定性和性能,同时减轻与非固体电解质相关的安全问题,并确定了LFP在复合阴极中的负载和组成比例,从而与SMICE结合产生最佳结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信