Enhanced electrocatalytic OER performance of Ba/CS-CoFe2O4 ternary heterostructure catalyst: Experimental and theoretical insights

IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Qirat Yameen , Muhammad Ikram , Sawaira Moeen , Muhammad Imran , Anwar Ul-Hamid , Ghafar Ali , Souraya Goumri-Said , Mohammed Benali Kanoun
{"title":"Enhanced electrocatalytic OER performance of Ba/CS-CoFe2O4 ternary heterostructure catalyst: Experimental and theoretical insights","authors":"Qirat Yameen ,&nbsp;Muhammad Ikram ,&nbsp;Sawaira Moeen ,&nbsp;Muhammad Imran ,&nbsp;Anwar Ul-Hamid ,&nbsp;Ghafar Ali ,&nbsp;Souraya Goumri-Said ,&nbsp;Mohammed Benali Kanoun","doi":"10.1016/j.chemosphere.2025.144490","DOIUrl":null,"url":null,"abstract":"<div><div>Herein, a ternary heterostructure catalyst Ba/CS-CoFe<sub>2</sub>O<sub>4</sub> (barium/chitosan-doped Cobalt ferrite) was developed by a straightforward co-precipitation technique to investigate oxygen evolution reaction (OER) activity. Varying quantities (2 and 4 wt %) of Ba and a fixed amount (3 wt %) of CS were doped to modify the surface area, porosity, crystallite size, and stability of CoFe<sub>2</sub>O<sub>4</sub>. Comprehensive characterizations revealed multiple phases, polycrystalline behavior, enhanced absorption, structural defects, and nanorods overlapping nanoparticles (NPs) like the morphology of Ba/CS-CoFe<sub>2</sub>O<sub>4</sub>. Furthermore, the experimental results revealed that 2 wt % of Ba/CS-CoFe<sub>2</sub>O<sub>4</sub> exhibited superior electrocatalytic activity with the highest kinetics and ECSA (electrochemically active surface area) for the OER process in 1 M KOH. To further elucidate the OER performance, density functional theory (DFT) calculations were conducted. The optimized CoFe<sub>2</sub>O<sub>4</sub> structure was confirmed to have a cubic Fd-3m symmetry, with a calculated bandgap energy (E<sub>g</sub>) of 1.62 eV, closely matching experimental data. Adsorption energy calculations showed that Ba/CS doping significantly improved the binding strength of OH intermediates on the CoFe<sub>2</sub>O<sub>4</sub> (100) surface, highlighting the role of dopants in enhancing surface reactivity. These findings demonstrate the potential of Ba/CS doping to optimize the electronic, structural, and surface properties of CoFe<sub>2</sub>O<sub>4</sub> for efficient OER electrocatalysis, paving the way for novel electrochemical catalyst design.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"382 ","pages":"Article 144490"},"PeriodicalIF":8.1000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653525004333","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, a ternary heterostructure catalyst Ba/CS-CoFe2O4 (barium/chitosan-doped Cobalt ferrite) was developed by a straightforward co-precipitation technique to investigate oxygen evolution reaction (OER) activity. Varying quantities (2 and 4 wt %) of Ba and a fixed amount (3 wt %) of CS were doped to modify the surface area, porosity, crystallite size, and stability of CoFe2O4. Comprehensive characterizations revealed multiple phases, polycrystalline behavior, enhanced absorption, structural defects, and nanorods overlapping nanoparticles (NPs) like the morphology of Ba/CS-CoFe2O4. Furthermore, the experimental results revealed that 2 wt % of Ba/CS-CoFe2O4 exhibited superior electrocatalytic activity with the highest kinetics and ECSA (electrochemically active surface area) for the OER process in 1 M KOH. To further elucidate the OER performance, density functional theory (DFT) calculations were conducted. The optimized CoFe2O4 structure was confirmed to have a cubic Fd-3m symmetry, with a calculated bandgap energy (Eg) of 1.62 eV, closely matching experimental data. Adsorption energy calculations showed that Ba/CS doping significantly improved the binding strength of OH intermediates on the CoFe2O4 (100) surface, highlighting the role of dopants in enhancing surface reactivity. These findings demonstrate the potential of Ba/CS doping to optimize the electronic, structural, and surface properties of CoFe2O4 for efficient OER electrocatalysis, paving the way for novel electrochemical catalyst design.

Abstract Image

Ba/CS-CoFe2O4三元异质结构催化剂电催化OER性能的增强:实验和理论见解
本文采用直接共沉淀法制备了Ba/CS-CoFe2O4(钡/壳聚糖掺杂钴铁氧体)三元异质结构催化剂,用于研究析氧反应(OER)活性。加入一定量(2 wt %和4 wt %)的Ba和一定量(3 wt %)的CS来改变CoFe2O4的表面积、孔隙度、晶粒尺寸和稳定性。综合表征发现了Ba/CS-CoFe2O4的多相、多晶行为、吸收增强、结构缺陷和纳米棒重叠纳米粒子(NPs)。此外,实验结果表明,2 wt %的Ba/CS-CoFe2O4在1 M KOH条件下表现出优异的电催化活性,具有最高的动力学和ECSA(电化学活性表面积)。为了进一步阐明OER性能,进行了密度泛函理论(DFT)计算。优化后的CoFe2O4结构具有立方Fd-3m对称性,计算带隙能(Eg)为1.62 eV,与实验数据吻合较好。吸附能计算表明,Ba/CS掺杂显著提高了OH中间体在CoFe2O4(100)表面的结合强度,突出了掺杂剂在增强表面反应性方面的作用。这些发现证明了Ba/CS掺杂在优化CoFe2O4的电子、结构和表面性能以实现高效OER电催化方面的潜力,为新型电化学催化剂的设计铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemosphere
Chemosphere 环境科学-环境科学
CiteScore
15.80
自引率
8.00%
发文量
4975
审稿时长
3.4 months
期刊介绍: Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信