Qilin Li , Zhong Yuan , Dezhong Peng , Xiaomin Song , Huiming Zheng , Xinyu Su
{"title":"Granular-ball fuzzy information-based outlier detector","authors":"Qilin Li , Zhong Yuan , Dezhong Peng , Xiaomin Song , Huiming Zheng , Xinyu Su","doi":"10.1016/j.ijar.2025.109473","DOIUrl":null,"url":null,"abstract":"<div><div>Outlier detection is an important part of the process of carrying out data mining and analysis and has been applied to many fields. Existing methods are typically anchored in a single-sample processing paradigm, where the processing unit is each individual and single-granularity sample. This processing paradigm is inefficient and ignores the multi-granularity features inherent in data. In addition, these methods often overlook the uncertainty information present in the data. To remedy the above-mentioned shortcomings, we propose an unsupervised outlier detection method based on Granular-Ball Fuzzy Granules (GBFG). GBFG adopts a granular-ball-based computing paradigm, where the fundamental processing units are granular-balls. This shift from individual samples to granular-balls enables GBFG to capture the overall data structure from a multi-granularity perspective and improve the performance of outlier detection. Subsequently, we calculate the outlier factor based on the outlier degrees of the granular-ball fuzzy granules to which the sample belongs, serving as a measure of the outlier degrees of samples. The experimental results prove that GBFG has a remarkable performance compared with the existing excellent algorithms. The code of GBFG is publicly available on <span><span>https://github.com/Mxeron/GBFG</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"185 ","pages":"Article 109473"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X25001148","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Outlier detection is an important part of the process of carrying out data mining and analysis and has been applied to many fields. Existing methods are typically anchored in a single-sample processing paradigm, where the processing unit is each individual and single-granularity sample. This processing paradigm is inefficient and ignores the multi-granularity features inherent in data. In addition, these methods often overlook the uncertainty information present in the data. To remedy the above-mentioned shortcomings, we propose an unsupervised outlier detection method based on Granular-Ball Fuzzy Granules (GBFG). GBFG adopts a granular-ball-based computing paradigm, where the fundamental processing units are granular-balls. This shift from individual samples to granular-balls enables GBFG to capture the overall data structure from a multi-granularity perspective and improve the performance of outlier detection. Subsequently, we calculate the outlier factor based on the outlier degrees of the granular-ball fuzzy granules to which the sample belongs, serving as a measure of the outlier degrees of samples. The experimental results prove that GBFG has a remarkable performance compared with the existing excellent algorithms. The code of GBFG is publicly available on https://github.com/Mxeron/GBFG.
期刊介绍:
The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest.
Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning.
Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.