Experimental study of scCO2 injection strategies: Effects on geochemical reactions and reservoir properties in sandstone and carbonate formations

IF 5.5 0 ENERGY & FUELS
Stella I. Eyitayo , Talal Gamadi , Oladoyin Kolawole , Marshall C. Watson
{"title":"Experimental study of scCO2 injection strategies: Effects on geochemical reactions and reservoir properties in sandstone and carbonate formations","authors":"Stella I. Eyitayo ,&nbsp;Talal Gamadi ,&nbsp;Oladoyin Kolawole ,&nbsp;Marshall C. Watson","doi":"10.1016/j.jgsce.2025.205660","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon dioxide (CO<sub>2</sub>) storage in geological formations is a promising strategy for mitigating greenhouse gas emissions. However, the injection of supercritical CO<sub>2</sub> (scCO<sub>2</sub>) induced a geochemical reaction in the host rock. While the different causes of these reactions have been studied, the effects of different injection strategies are understudied. This study uses core-flooding equipment to investigate the effects of three different scCO<sub>2</sub> injection strategies-continuous scCO<sub>2</sub> injection (CCI), Water or Brine alternating scCO<sub>2</sub> injection (WAG), and Simultaneous brine or water and scCO<sub>2</sub> Aquifer injection (SAI)- on the petrophysical, mineralogy, and microstructural properties of the Gray Berea sandstone and Indiana limestone sample using X-ray diffractometer (XRD), CoreLab UltraPore<sup>TM</sup>300 Ultra K 500<sup>+</sup> and Scanning Electron Microscope-Energy-Dispersive X-ray Spectroscopy (SEM-EDS). Core-flooding experiments were conducted under dynamic flow conditions at 75, 225, and 525 pore volumes (PV) to simulate short-, intermediate-, and long-term CO<sub>2</sub> storage scenarios. Sandstone permeability dropped most under WAG and SAI (∼35 %), with CCI showing a 6.8 % reduction. Carbonate porosity showed an overall gain of 2.5 %–3.3 %, increased permeability under CCI (20.3 %), WAG (4.8 %), and declined under SAI. Elemental analysis showed up to a 50 % increase in Ca and 40.6 % in C in sandstone (CCI), indicating significant carbonate precipitation, while limestone samples exposed to SAI exhibited Al and Si increases of up to 550 % and 322.2 %, respectively, highlighting more intense silicate mineral formation compared to sandstone with microstructural changes observed across all injection methods, especially at extended exposure durations.</div><div>These changes are primarily driven by the dissolution of the host rock, acidification, saturation effects, fluid-rock interaction dynamics, etc. The sequence of the dissolution, precipitation, formation of new minerals, and fine migrations also contributes to alterations in pore structures and fluid flow pathways. WAG indicates a balanced approach to the other two injection strategies. However, the reduction in permeability is not desirable.</div></div>","PeriodicalId":100568,"journal":{"name":"Gas Science and Engineering","volume":"140 ","pages":"Article 205660"},"PeriodicalIF":5.5000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gas Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949908925001244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon dioxide (CO2) storage in geological formations is a promising strategy for mitigating greenhouse gas emissions. However, the injection of supercritical CO2 (scCO2) induced a geochemical reaction in the host rock. While the different causes of these reactions have been studied, the effects of different injection strategies are understudied. This study uses core-flooding equipment to investigate the effects of three different scCO2 injection strategies-continuous scCO2 injection (CCI), Water or Brine alternating scCO2 injection (WAG), and Simultaneous brine or water and scCO2 Aquifer injection (SAI)- on the petrophysical, mineralogy, and microstructural properties of the Gray Berea sandstone and Indiana limestone sample using X-ray diffractometer (XRD), CoreLab UltraPoreTM300 Ultra K 500+ and Scanning Electron Microscope-Energy-Dispersive X-ray Spectroscopy (SEM-EDS). Core-flooding experiments were conducted under dynamic flow conditions at 75, 225, and 525 pore volumes (PV) to simulate short-, intermediate-, and long-term CO2 storage scenarios. Sandstone permeability dropped most under WAG and SAI (∼35 %), with CCI showing a 6.8 % reduction. Carbonate porosity showed an overall gain of 2.5 %–3.3 %, increased permeability under CCI (20.3 %), WAG (4.8 %), and declined under SAI. Elemental analysis showed up to a 50 % increase in Ca and 40.6 % in C in sandstone (CCI), indicating significant carbonate precipitation, while limestone samples exposed to SAI exhibited Al and Si increases of up to 550 % and 322.2 %, respectively, highlighting more intense silicate mineral formation compared to sandstone with microstructural changes observed across all injection methods, especially at extended exposure durations.
These changes are primarily driven by the dissolution of the host rock, acidification, saturation effects, fluid-rock interaction dynamics, etc. The sequence of the dissolution, precipitation, formation of new minerals, and fine migrations also contributes to alterations in pore structures and fluid flow pathways. WAG indicates a balanced approach to the other two injection strategies. However, the reduction in permeability is not desirable.
scCO2注入策略实验研究:对砂岩和碳酸盐地层地球化学反应和储层物性的影响
在地质构造中储存二氧化碳是一种很有前途的减少温室气体排放的策略。超临界CO2 (scCO2)的注入引起了宿主岩的地球化学反应。虽然研究了这些反应的不同原因,但对不同注射策略的影响研究不足。本研究利用x射线衍射仪(XRD)研究了三种不同的scCO2注入策略——连续注入scCO2 (CCI)、水或盐水交替注入scCO2 (WAG)和同时注入盐水或水和scCO2含水层(SAI)——对Gray Berea砂岩和印第安纳石灰岩样品的岩石物理、矿物学和微观结构特性的影响。CoreLab UltraPoreTM300 Ultra K 500+和扫描电子显微镜-能量色散x射线光谱学(SEM-EDS)。在75、225和525孔隙体积(PV)的动态流动条件下进行岩心驱油实验,模拟短期、中期和长期二氧化碳储存情景。在WAG和SAI下,砂岩渗透率下降最多(~ 35%),CCI下降了6.8%。碳酸盐岩孔隙度总体增加2.5% ~ 3.3%,CCI和WAG作用下渗透率分别增加20.3%和4.8%,SAI作用下渗透率下降。元素分析显示,砂岩(CCI)中Ca和C含量分别增加了50%和40.6%,表明碳酸盐沉淀显著,而暴露于SAI的石灰岩样品中Al和Si含量分别增加了550%和322.2%,这表明与砂岩相比,硅酸盐矿物形成更为强烈,在所有注入方法中都观察到微观结构变化,特别是在长时间暴露下。这些变化主要是由寄主岩的溶蚀、酸化、饱和效应、流体-岩石相互作用动力学等因素驱动的。溶蚀、沉淀、新矿物的形成和精细运移的顺序也有助于孔隙结构和流体流动路径的改变。WAG表明了对其他两种注入策略的平衡方法。然而,渗透率的降低是不可取的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信