Jéssica Alves Nogueira, Lucas Dias Germano, Leonardo Domenico De Angelis, Susana Inés Córdoba de Torresi
{"title":"The role of water and cations in shaping electrified interfaces: Insights from Raman and FTIR spectroscopy","authors":"Jéssica Alves Nogueira, Lucas Dias Germano, Leonardo Domenico De Angelis, Susana Inés Córdoba de Torresi","doi":"10.1016/j.coelec.2025.101701","DOIUrl":null,"url":null,"abstract":"<div><div>A detailed understanding of the structural dynamics of water at the electrode/electrolyte interface is essential for deciphering and improving electrocatalyst performance. This review highlights innovative uses of Raman and Fourier Transform Infrared spectroscopy to probe interfacial water under electrochemical conditions. Moving beyond conventional approaches, we discuss strategies that evaluate the influence of electrolyte composition and external stimuli—such as light irradiation—on the dynamics of interfacial species. These <em>in situ</em> techniques uncover changes in water orientation and coordination during critical reactions like CO<sub>2</sub> reduction and oxygen evolution. In alkaline environments, cations significantly influence interfacial dynamics: their hydration shells disrupt hydrogen bonding networks, modulating water adsorption, local electric fields, proton transport, and the stabilization of reaction intermediates. The creative application of advanced spectroscopic techniques to evaluate the effects of electrolytes, applied potentials, and/or irradiation on water structure provides novel insights that are reshaping our understanding of the electrified interface.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"52 ","pages":"Article 101701"},"PeriodicalIF":7.9000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910325000602","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A detailed understanding of the structural dynamics of water at the electrode/electrolyte interface is essential for deciphering and improving electrocatalyst performance. This review highlights innovative uses of Raman and Fourier Transform Infrared spectroscopy to probe interfacial water under electrochemical conditions. Moving beyond conventional approaches, we discuss strategies that evaluate the influence of electrolyte composition and external stimuli—such as light irradiation—on the dynamics of interfacial species. These in situ techniques uncover changes in water orientation and coordination during critical reactions like CO2 reduction and oxygen evolution. In alkaline environments, cations significantly influence interfacial dynamics: their hydration shells disrupt hydrogen bonding networks, modulating water adsorption, local electric fields, proton transport, and the stabilization of reaction intermediates. The creative application of advanced spectroscopic techniques to evaluate the effects of electrolytes, applied potentials, and/or irradiation on water structure provides novel insights that are reshaping our understanding of the electrified interface.
期刊介绍:
The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner:
1.The views of experts on current advances in electrochemistry in a clear and readable form.
2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle:
• Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •