De-coupling of optical and electrical properties in front TCO using the bilayer concept for thin-film solar cells

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Federica Saitta, Prashand Kalpoe, Vidur Ahluwalia, Govind Padmakumar, Paula Perez Rodriguez, Gianluca Limodio, Rudi Santbergen, Arno H.M. Smets
{"title":"De-coupling of optical and electrical properties in front TCO using the bilayer concept for thin-film solar cells","authors":"Federica Saitta,&nbsp;Prashand Kalpoe,&nbsp;Vidur Ahluwalia,&nbsp;Govind Padmakumar,&nbsp;Paula Perez Rodriguez,&nbsp;Gianluca Limodio,&nbsp;Rudi Santbergen,&nbsp;Arno H.M. Smets","doi":"10.1016/j.solmat.2025.113723","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the transparent conductive oxides (TCOs) as front contact for thin-film solar cell applications by developing a bilayer design that decouples the optical and electrical functionalities. The bilayer front contact structure combines hydrogenated indium oxide (IOH) and non-intentionally doped zinc oxide (ZnO) materials. This design achieves enhanced optoelectrical properties with a mobility of 120 cm<sup>2</sup>/Vs and a carrier density of 1.97·10<sup>19</sup> cm<sup>-3</sup>. Notably, the bilayer outperforms the expected average of its constituent layers in both transparency and conductivity, reflecting the benefits of optimized layer architecture. When integrated as the front electrode in a hydrogenated nanocrystalline silicon (nc-Si:H) solar cell, the IOH/ZnO bilayer yields a fill factor of 64.56 % and a power conversion efficiency of 7.85 %. When using an ITO front contact, the nc-Si:H solar cell reveals a fill factor of 56.27 % and an efficiency of 6.80 %. By successfully decoupling optical and electrical properties, the optimized IOH/ZnO bilayer offers a significant advancement over single-layer TCO configurations, presenting an innovative pathway for enhanced performance in thin-film solar cell technology.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"290 ","pages":"Article 113723"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825003241","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the transparent conductive oxides (TCOs) as front contact for thin-film solar cell applications by developing a bilayer design that decouples the optical and electrical functionalities. The bilayer front contact structure combines hydrogenated indium oxide (IOH) and non-intentionally doped zinc oxide (ZnO) materials. This design achieves enhanced optoelectrical properties with a mobility of 120 cm2/Vs and a carrier density of 1.97·1019 cm-3. Notably, the bilayer outperforms the expected average of its constituent layers in both transparency and conductivity, reflecting the benefits of optimized layer architecture. When integrated as the front electrode in a hydrogenated nanocrystalline silicon (nc-Si:H) solar cell, the IOH/ZnO bilayer yields a fill factor of 64.56 % and a power conversion efficiency of 7.85 %. When using an ITO front contact, the nc-Si:H solar cell reveals a fill factor of 56.27 % and an efficiency of 6.80 %. By successfully decoupling optical and electrical properties, the optimized IOH/ZnO bilayer offers a significant advancement over single-layer TCO configurations, presenting an innovative pathway for enhanced performance in thin-film solar cell technology.
利用薄膜太阳能电池的双层概念来解耦前TCO的光学和电学特性
本研究通过开发一种光学和电学功能去耦的双层设计,研究了透明导电氧化物(TCOs)作为薄膜太阳能电池应用的前接触。双层前接触结构结合了氢化氧化铟(IOH)和非故意掺杂氧化锌(ZnO)材料。该设计实现了增强的光电性能,迁移率为120 cm2/Vs,载流子密度为1.97·1019 cm-3。值得注意的是,双层在透明度和导电性方面的表现优于其组成层的预期平均值,反映了优化层结构的好处。当IOH/ZnO双分子层作为前电极集成在氢化纳米晶硅太阳能电池中时,其填充系数为64.56%,功率转换效率为7.85%。当使用ITO前触点时,nc-Si:H太阳能电池的填充系数为56.27%,效率为6.80%。通过成功解耦光学和电学性质,优化后的IOH/ZnO双层结构比单层TCO结构有了显著的进步,为薄膜太阳能电池技术的性能提高提供了一条创新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信