Radiation-resilient ultra-thin GaAs solar cells on glass transferred by anodic bonding

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Jiayi Li , Shin-ichiro Sato , Armin Barthel , Tyler Colenbrander , Eduardo Camarillo Abad , Benjamin Ramsay , Takeshi Ohshima , Mitsuru Imaizumi , Louise C. Hirst
{"title":"Radiation-resilient ultra-thin GaAs solar cells on glass transferred by anodic bonding","authors":"Jiayi Li ,&nbsp;Shin-ichiro Sato ,&nbsp;Armin Barthel ,&nbsp;Tyler Colenbrander ,&nbsp;Eduardo Camarillo Abad ,&nbsp;Benjamin Ramsay ,&nbsp;Takeshi Ohshima ,&nbsp;Mitsuru Imaizumi ,&nbsp;Louise C. Hirst","doi":"10.1016/j.solmat.2025.113672","DOIUrl":null,"url":null,"abstract":"<div><div>Ultra-thin GaAs photovoltaics with light management offer flexible form factors, higher specific power, a route to low material cost, and inherent resilience to damaging radiation environments in space, compared to conventional on-wafer architectures with thick absorbers. Here we demonstrated an adhesive-free method of bonding ultra-thin GaAs solar cells to borosilicate glass by anodic bonding. This off-wafer processing method replaces the III-V growth substrate with a glass superstrate offering higher specific power in addition to space radiation protection. In the glass-as-superstrate embodiment, the maximum power density (Pmax) remaining factor achieves 0.86 after 1 MeV electron exposure with a fluence of <span><math><mrow><mn>3</mn><mo>.</mo><mn>6</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>16</mn></mrow></msup></mrow></math></span> cm<sup>−2</sup>, equivalent to <span><math><mo>&gt;</mo></math></span> 15 years in a geostationary orbit (GEO), exceeding that of current commercial triple-junction space solar cells. The short-circuit current density (Jsc) of the ultra-thin GaAs solar cells with only 80 nm thick absorbers could be boosted to 17.69 mA/cm<sup>2</sup> using higher bandgap III-V alloys as contact and bonding layers, with further improvement of integrating advanced light management approaches for higher power conversion efficiency.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"290 ","pages":"Article 113672"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825002739","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Ultra-thin GaAs photovoltaics with light management offer flexible form factors, higher specific power, a route to low material cost, and inherent resilience to damaging radiation environments in space, compared to conventional on-wafer architectures with thick absorbers. Here we demonstrated an adhesive-free method of bonding ultra-thin GaAs solar cells to borosilicate glass by anodic bonding. This off-wafer processing method replaces the III-V growth substrate with a glass superstrate offering higher specific power in addition to space radiation protection. In the glass-as-superstrate embodiment, the maximum power density (Pmax) remaining factor achieves 0.86 after 1 MeV electron exposure with a fluence of 3.6×1016 cm−2, equivalent to > 15 years in a geostationary orbit (GEO), exceeding that of current commercial triple-junction space solar cells. The short-circuit current density (Jsc) of the ultra-thin GaAs solar cells with only 80 nm thick absorbers could be boosted to 17.69 mA/cm2 using higher bandgap III-V alloys as contact and bonding layers, with further improvement of integrating advanced light management approaches for higher power conversion efficiency.
辐射弹性超薄砷化镓太阳能电池在玻璃阳极键转移
与具有厚吸收器的传统晶片上架构相比,具有光管理的超薄砷化镓光伏电池具有灵活的外形因素,更高的比功率,更低的材料成本,以及对空间中破坏性辐射环境的固有弹性。在这里,我们展示了一种通过阳极键合将超薄砷化镓太阳能电池连接到硼硅酸盐玻璃上的无粘合剂方法。这种晶圆外加工方法取代了III-V型生长基板,取而代之的是玻璃衬底,除了提供更高的比功率外,还提供空间辐射防护。在玻璃作为上覆层实施例中,在1 MeV电子暴露后,最大功率密度(Pmax)剩余因子达到0.86,影响为3.6×1016 cm−2,相当于>;在地球静止轨道(GEO)运行15年,超过了目前商用三结空间太阳能电池的寿命。采用高带隙III-V合金作为接触层和键合层,可以将仅80 nm厚吸收层的超薄GaAs太阳能电池的短路电流密度(Jsc)提高到17.69 mA/cm2,并进一步集成先进的光管理方法以提高功率转换效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信