Comparative analysis of optoelectronic and structural characteristics in electrochemically synthesized hybrid-nanocomposites based on PANI-CSA/metal oxide nanoparticles
{"title":"Comparative analysis of optoelectronic and structural characteristics in electrochemically synthesized hybrid-nanocomposites based on PANI-CSA/metal oxide nanoparticles","authors":"Tariq AlZoubi , Mahmoud Al-Gharram , Ghaseb Makhadmeh , Osamah Abu Noqta","doi":"10.1016/j.physb.2025.417380","DOIUrl":null,"url":null,"abstract":"<div><div>The strategic integration of conductive polymers with transition metal oxide nanoparticles (NPs) offers a promising route to engineer multifunctional nanocomposite systems with tailored optoelectronic properties. In this work, we report the electrochemical synthesis and detailed characterization of PANI-CSA-based hybrid nanocomposites embedded with 12 wt% of CoFe<sub>2</sub>O<sub>4</sub>, Co<sub>3</sub>O<sub>4</sub>, and Fe<sub>2</sub>O<sub>3</sub> nanoparticles. Thin films were deposited via in situ electrodeposition onto ITO-glass substrates, enabling precise control over composition and morphology. Comprehensive optical analysis via UV–Vis spectroscopy revealed NP-induced modulation of key optical parameters, including enhanced absorption, modified refractive indices, and tunable optical bandgaps. Tauc plot analysis indicated systematic bandgap shifts ranging from 3.48 to 3.61 eV, while Urbach energy trends reflected variations in structural disorder. XRD confirmed increased crystalline and the formation of larger crystallites upon nanoparticle incorporation, consistent with interfacial ordering effects. FTIR spectra substantiated strong molecular interactions between PANI chains and metal oxide surfaces, while SEM micrographs exhibited dense fibrous morphologies supporting effective charge transport pathways. Electrical conductivity measurements, performed via a four-point probe, demonstrated high conductivity (77.3–79.9 S cm<sup>−1</sup>), with the Co<sub>3</sub>O<sub>4</sub>-based system exhibiting superior performance, attributable to enhanced crystallinity and potential p-type doping effects. Collectively, these results highlight the efficacy of metal oxide NPs as secondary dopants in modulating the optoelectronic response of PANI-CSA, positioning these hybrid films as viable candidates for advanced optoelectronic applications, including optical sensors and flexible electronic devices.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"713 ","pages":"Article 417380"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625004971","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
The strategic integration of conductive polymers with transition metal oxide nanoparticles (NPs) offers a promising route to engineer multifunctional nanocomposite systems with tailored optoelectronic properties. In this work, we report the electrochemical synthesis and detailed characterization of PANI-CSA-based hybrid nanocomposites embedded with 12 wt% of CoFe2O4, Co3O4, and Fe2O3 nanoparticles. Thin films were deposited via in situ electrodeposition onto ITO-glass substrates, enabling precise control over composition and morphology. Comprehensive optical analysis via UV–Vis spectroscopy revealed NP-induced modulation of key optical parameters, including enhanced absorption, modified refractive indices, and tunable optical bandgaps. Tauc plot analysis indicated systematic bandgap shifts ranging from 3.48 to 3.61 eV, while Urbach energy trends reflected variations in structural disorder. XRD confirmed increased crystalline and the formation of larger crystallites upon nanoparticle incorporation, consistent with interfacial ordering effects. FTIR spectra substantiated strong molecular interactions between PANI chains and metal oxide surfaces, while SEM micrographs exhibited dense fibrous morphologies supporting effective charge transport pathways. Electrical conductivity measurements, performed via a four-point probe, demonstrated high conductivity (77.3–79.9 S cm−1), with the Co3O4-based system exhibiting superior performance, attributable to enhanced crystallinity and potential p-type doping effects. Collectively, these results highlight the efficacy of metal oxide NPs as secondary dopants in modulating the optoelectronic response of PANI-CSA, positioning these hybrid films as viable candidates for advanced optoelectronic applications, including optical sensors and flexible electronic devices.
期刊介绍:
Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work.
Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas:
-Magnetism
-Materials physics
-Nanostructures and nanomaterials
-Optics and optical materials
-Quantum materials
-Semiconductors
-Strongly correlated systems
-Superconductivity
-Surfaces and interfaces