{"title":"Memory-efficient and robust detection of Mirai botnet for future 6G-enabled IoT networks","authors":"Zainab Alwaisi","doi":"10.1016/j.iot.2025.101621","DOIUrl":null,"url":null,"abstract":"<div><div>The rise of 6G-enabled IoT networks has introduced significant challenges in securing resource-constrained devices against high-memory and energy-intensive cyber threats, such as the Mirai botnet. Due to their computational and memory overhead, existing Intrusion Detection Systems (IDS) and deep learning-based security mechanisms are often impractical for constrained IoT environments. This study proposes a TinyML-based real-time anomaly detection framework to classify and detect four distinct Mirai botnet attack types: Scan, UDP flooding, TCP flooding, and ACK flooding while analysing their impact on IoT device memory consumption and security.</div><div>To address the trade-off between detection accuracy, memory efficiency, and inference time, Naïve Bayes (NB), Random Forest (RF), Support Vector Machine (SVM), and K-Nearest Neighbours (KNN) classifiers optimized for TinyML deployment are implemented and compared. Experimental results demonstrate that KNN achieves detection accuracy above 99%, while maintaining low memory usage, making it the most suitable choice for real-time security in constrained IoT environments. Conversely, NB and RF offer superior inference speed with lower computational overhead, presenting a trade-off between detection latency and resource efficiency. Additionally, analysis reveals that Mirai botnet-induced memory consumption leads to increased fragmentation, excessive RAM usage, and higher energy consumption, highlighting the need for adaptive security mechanisms. This framework provides a lightweight, memory-efficient solution for enhancing security in 6G-enabled IoT ecosystems, with potential applications in smart cities, smart homes, and Industry 4.0. By integrating memory-aware ML models, this work contributes critical insights into developing scalable cybersecurity frameworks to ensure resilience against evolving cyber threats.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"32 ","pages":"Article 101621"},"PeriodicalIF":6.0000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525001350","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The rise of 6G-enabled IoT networks has introduced significant challenges in securing resource-constrained devices against high-memory and energy-intensive cyber threats, such as the Mirai botnet. Due to their computational and memory overhead, existing Intrusion Detection Systems (IDS) and deep learning-based security mechanisms are often impractical for constrained IoT environments. This study proposes a TinyML-based real-time anomaly detection framework to classify and detect four distinct Mirai botnet attack types: Scan, UDP flooding, TCP flooding, and ACK flooding while analysing their impact on IoT device memory consumption and security.
To address the trade-off between detection accuracy, memory efficiency, and inference time, Naïve Bayes (NB), Random Forest (RF), Support Vector Machine (SVM), and K-Nearest Neighbours (KNN) classifiers optimized for TinyML deployment are implemented and compared. Experimental results demonstrate that KNN achieves detection accuracy above 99%, while maintaining low memory usage, making it the most suitable choice for real-time security in constrained IoT environments. Conversely, NB and RF offer superior inference speed with lower computational overhead, presenting a trade-off between detection latency and resource efficiency. Additionally, analysis reveals that Mirai botnet-induced memory consumption leads to increased fragmentation, excessive RAM usage, and higher energy consumption, highlighting the need for adaptive security mechanisms. This framework provides a lightweight, memory-efficient solution for enhancing security in 6G-enabled IoT ecosystems, with potential applications in smart cities, smart homes, and Industry 4.0. By integrating memory-aware ML models, this work contributes critical insights into developing scalable cybersecurity frameworks to ensure resilience against evolving cyber threats.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.