Novel insights into microwave–induced magnetoresistance oscillations in GaAs, AlN, and InN materials of Pöschl–Teller quantum wells: A study based on the quantum kinetic equation

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Nguyen Cong Toan , Le Nguyen Dinh Khoi , Tran Ky Vi , Nguyen Viet Anh , Nguyen Dang Quang Huy , Duong Dai Phuong , Anh-Tuan Tran
{"title":"Novel insights into microwave–induced magnetoresistance oscillations in GaAs, AlN, and InN materials of Pöschl–Teller quantum wells: A study based on the quantum kinetic equation","authors":"Nguyen Cong Toan ,&nbsp;Le Nguyen Dinh Khoi ,&nbsp;Tran Ky Vi ,&nbsp;Nguyen Viet Anh ,&nbsp;Nguyen Dang Quang Huy ,&nbsp;Duong Dai Phuong ,&nbsp;Anh-Tuan Tran","doi":"10.1016/j.physb.2025.417355","DOIUrl":null,"url":null,"abstract":"<div><div>We present a theoretical study of microwave-induced magnetoresistance oscillations in Pöschl–Teller quantum wells for GaAs and group III-nitride materials (AlN and InN). Employing the quantum kinetic equation approach, we derive analytical expressions for magnetoresistance, explicitly accounting for electron–acoustic phonon interactions at low temperatures. The results reveal strong dependence of the oscillations on magnetic field, temperature, structural parameters, microwave intensity, and photon energy. In the absence of microwave, conventional Shubnikov–de Haas oscillations are recovered, whose amplitude decreases with increasing temperature, in good agreement with previous theoretical and experimental results. Under terahertz microwave fields, pronounced beat patterns emerge in GaAs and InN, while the effect is negligible in AlN. Cyclotron resonance appears in all materials, accompanied by subsidiary maxima at half-integer frequency ratios. Additionally, the oscillation amplitude increases significantly with higher microwave intensity. These findings offer insights into the interplay between microwaves and magnetotransport in semiconductor heterostructures and guide quantum device applications.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"713 ","pages":"Article 417355"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625004727","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

We present a theoretical study of microwave-induced magnetoresistance oscillations in Pöschl–Teller quantum wells for GaAs and group III-nitride materials (AlN and InN). Employing the quantum kinetic equation approach, we derive analytical expressions for magnetoresistance, explicitly accounting for electron–acoustic phonon interactions at low temperatures. The results reveal strong dependence of the oscillations on magnetic field, temperature, structural parameters, microwave intensity, and photon energy. In the absence of microwave, conventional Shubnikov–de Haas oscillations are recovered, whose amplitude decreases with increasing temperature, in good agreement with previous theoretical and experimental results. Under terahertz microwave fields, pronounced beat patterns emerge in GaAs and InN, while the effect is negligible in AlN. Cyclotron resonance appears in all materials, accompanied by subsidiary maxima at half-integer frequency ratios. Additionally, the oscillation amplitude increases significantly with higher microwave intensity. These findings offer insights into the interplay between microwaves and magnetotransport in semiconductor heterostructures and guide quantum device applications.
Pöschl-Teller量子阱中GaAs, AlN和InN材料中微波诱导磁阻振荡的新见解:基于量子动力学方程的研究
本文对GaAs和iii族氮化材料(AlN和InN)在Pöschl-Teller量子阱中微波诱导的磁阻振荡进行了理论研究。采用量子动力学方程方法,我们推导了磁电阻的解析表达式,明确地说明了低温下电子-声学声子相互作用。结果表明,振荡对磁场、温度、结构参数、微波强度和光子能量有很强的依赖性。在没有微波的情况下,恢复了传统的舒布尼科夫-德哈斯振荡,其振幅随温度的升高而减小,与先前的理论和实验结果吻合良好。在太赫兹微波场下,GaAs和InN中出现明显的节拍模式,而AlN中的影响可以忽略不计。回旋共振出现在所有材料中,并伴随着半整数频率比的辅助最大值。随着微波强度的增加,振荡幅度显著增大。这些发现为半导体异质结构中微波和磁输运之间的相互作用以及引导量子器件的应用提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信