Zhao Li , Xinde Wei , Zhaozhao Zhu , Wu Jiang , Yangwu Hou , Rui Yuan , Yan Wang , Dong Xie , Junjie Wang , Yingxi Lin , Rui Wu , Qingquan Kong , Jun Song Chen
{"title":"Synthesis, characterizations, and structure-activity relationship of dual-atom catalysts for CO2 electroreduction","authors":"Zhao Li , Xinde Wei , Zhaozhao Zhu , Wu Jiang , Yangwu Hou , Rui Yuan , Yan Wang , Dong Xie , Junjie Wang , Yingxi Lin , Rui Wu , Qingquan Kong , Jun Song Chen","doi":"10.1016/j.decarb.2025.100112","DOIUrl":null,"url":null,"abstract":"<div><div>Electrocatalytic carbon dioxide reduction is one of the very effective ways to achieve carbon neutrality, by converting CO<sub>2</sub> into fuels and high-value chemicals. Therefore, it is crucial to design efficient CO<sub>2</sub> reduction electrocatalysts and understand their reaction mechanism. Among various catalysts, dual-atom catalysts (DACs) offer several advantages, including a wide range of reaction types, high stability, customizable design, high reaction selectivity, tunable electronic structure, and strong catalytic activity. It is thus crucial to understand the reaction mechanism of DACs in CO<sub>2</sub> reduction, especially the regulation of critical intermediates. In this review, we focus on the synthesis, structure-activity relationship, and application of DACs. Finally, some challenges and further prospects are also summarized, especially in terms of stability, product selectivity, and large-scale deployment. With the advancement of new materials and computational tools, DACs are poised to play increasingly important roles in CO<sub>2</sub> reduction, providing effective solutions for sustainable energy and environmental protection.</div></div>","PeriodicalId":100356,"journal":{"name":"DeCarbon","volume":"9 ","pages":"Article 100112"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DeCarbon","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949881325000150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Electrocatalytic carbon dioxide reduction is one of the very effective ways to achieve carbon neutrality, by converting CO2 into fuels and high-value chemicals. Therefore, it is crucial to design efficient CO2 reduction electrocatalysts and understand their reaction mechanism. Among various catalysts, dual-atom catalysts (DACs) offer several advantages, including a wide range of reaction types, high stability, customizable design, high reaction selectivity, tunable electronic structure, and strong catalytic activity. It is thus crucial to understand the reaction mechanism of DACs in CO2 reduction, especially the regulation of critical intermediates. In this review, we focus on the synthesis, structure-activity relationship, and application of DACs. Finally, some challenges and further prospects are also summarized, especially in terms of stability, product selectivity, and large-scale deployment. With the advancement of new materials and computational tools, DACs are poised to play increasingly important roles in CO2 reduction, providing effective solutions for sustainable energy and environmental protection.