Tailoring and unveiling the stable solvent structure dependence of interfacial chemistry for extremely high-temperature lithium metal batteries

IF 13.1 1区 化学 Q1 Energy
Li Liao , Yu Shen , Qinghua Yang , Shuiyong Wang , Mengmeng Yin , Chengcheng Tao , Pan Luo , Jialin Song , Yin Shen , Xuanzhong Wen , Xiaoshuang Luo , Mingshan Wang , Zhenzhong Yang , Xing Li
{"title":"Tailoring and unveiling the stable solvent structure dependence of interfacial chemistry for extremely high-temperature lithium metal batteries","authors":"Li Liao ,&nbsp;Yu Shen ,&nbsp;Qinghua Yang ,&nbsp;Shuiyong Wang ,&nbsp;Mengmeng Yin ,&nbsp;Chengcheng Tao ,&nbsp;Pan Luo ,&nbsp;Jialin Song ,&nbsp;Yin Shen ,&nbsp;Xuanzhong Wen ,&nbsp;Xiaoshuang Luo ,&nbsp;Mingshan Wang ,&nbsp;Zhenzhong Yang ,&nbsp;Xing Li","doi":"10.1016/j.jechem.2025.04.055","DOIUrl":null,"url":null,"abstract":"<div><div>Traditionally, the construction of stable interphases relies on solvent structures dominated by aggregated anionic structures (AGG/AGG+). Nonetheless, we find that the construction of stable interphases in high-temperature environments is based on contact ion pairs (CIPs) dominated solvation structure here. In detail, in the long-chain phosphate ester-based electrolyte, the spatial site-blocking effect enables the strong solvation co-solvent ether (diethylene glycol dimethyl ether, G2) to exhibit strong ion-dipole interactions, further multicomponent competitive coordination maintaining the CIP, balancing electrode kinetics, and optimizing the high-temperature interphases. High-temperature in-situ Raman spectroscopy monitors the changes in the stable solvent structure during charge/discharge processes for the first time, and time of flight secondary ion mass spectrometry (TOF-SIMS) reveals the stable solid electrolyte interphase (SEI) with full-depth enrichment of the inorganic component. Benefiting from the high-temperature interfacial chemistry-dependent solvent structure, the advanced electrolyte enables stable cycling of 1.6 Ah 18650 batterie at 100–125 °C and discharging with high current pulses (∼1.83 A) at 150 °C, which has rarely been reported so far. In addition, pin-pricking of 18650 batteries at 100% state of charge (SoC) without fire or smoke and the moderate thermal runaway temperature (187 °C) tested via the accelerating rate calorimetry (ARC) demonstrate the excellent safety of the optimized electrolyte.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"108 ","pages":"Pages 655-664"},"PeriodicalIF":13.1000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495625003705","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Traditionally, the construction of stable interphases relies on solvent structures dominated by aggregated anionic structures (AGG/AGG+). Nonetheless, we find that the construction of stable interphases in high-temperature environments is based on contact ion pairs (CIPs) dominated solvation structure here. In detail, in the long-chain phosphate ester-based electrolyte, the spatial site-blocking effect enables the strong solvation co-solvent ether (diethylene glycol dimethyl ether, G2) to exhibit strong ion-dipole interactions, further multicomponent competitive coordination maintaining the CIP, balancing electrode kinetics, and optimizing the high-temperature interphases. High-temperature in-situ Raman spectroscopy monitors the changes in the stable solvent structure during charge/discharge processes for the first time, and time of flight secondary ion mass spectrometry (TOF-SIMS) reveals the stable solid electrolyte interphase (SEI) with full-depth enrichment of the inorganic component. Benefiting from the high-temperature interfacial chemistry-dependent solvent structure, the advanced electrolyte enables stable cycling of 1.6 Ah 18650 batterie at 100–125 °C and discharging with high current pulses (∼1.83 A) at 150 °C, which has rarely been reported so far. In addition, pin-pricking of 18650 batteries at 100% state of charge (SoC) without fire or smoke and the moderate thermal runaway temperature (187 °C) tested via the accelerating rate calorimetry (ARC) demonstrate the excellent safety of the optimized electrolyte.
剪裁和揭示了极高温锂金属电池界面化学对稳定溶剂结构的依赖
传统上,稳定界面相的构建依赖于以聚集阴离子结构(AGG/AGG+)为主的溶剂结构。尽管如此,我们发现在高温环境中稳定界面相的构建是基于接触离子对(cip)主导的溶剂化结构。具体而言,在长链磷酸酯基电解质中,空间位点阻断效应使强溶剂化共溶剂醚(二乙二醇二甲醚,G2)表现出强离子偶极相互作用,进一步的多组分竞争配位维持了CIP,平衡了电极动力学,优化了高温界面相。高温原位拉曼光谱首次监测了充电/放电过程中稳定溶剂结构的变化,飞行时间二次离子质谱(TOF-SIMS)揭示了无机组分全深度富集的稳定固体电解质界面(SEI)。得益于高温界面化学依赖的溶剂结构,这种先进的电解质可以使1.6 Ah的18650电池在100-125°C下稳定循环,并在150°C下以高电流脉冲(~ 1.83 A)放电,迄今为止很少有报道。此外,18650电池在100%充电状态(SoC)下的无火无烟针刺实验和加速量热法(ARC)的中度热失控温度(187°C)测试表明,优化后的电解质具有良好的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信