Effect of air layer thickness on melting kinetics and heat transfer in horizontally oriented hemispherical phase change material enclosures

Q1 Chemical Engineering
Abbas Fadhil Khalaf , Farhan Lafta Rashid , Mudhar A. Al-Obaidi , Hayder I. Mohammed , Arman Ameen , Ephraim Bonah Agyekum
{"title":"Effect of air layer thickness on melting kinetics and heat transfer in horizontally oriented hemispherical phase change material enclosures","authors":"Abbas Fadhil Khalaf ,&nbsp;Farhan Lafta Rashid ,&nbsp;Mudhar A. Al-Obaidi ,&nbsp;Hayder I. Mohammed ,&nbsp;Arman Ameen ,&nbsp;Ephraim Bonah Agyekum","doi":"10.1016/j.ijft.2025.101261","DOIUrl":null,"url":null,"abstract":"<div><div>Phase change materials (PCMs) in thermal energy storage systems often encounter unintended air gaps that critically affect performance, yet their effects in hemispherical enclosures remain unexplored. This research delves into the critical role of air layer thickness in modulating the melting kinetics and heat transfer performance of PCM within horizontally oriented hemispherical enclosures—a configuration with considerable applications for thermal energy storage (TES) systems. This research has systematically quantified how air layer thickness (0–3 mm) affects PCM melting dynamics using advanced ANSYS/FLUENT 16 simulations. The absence of an air layer (0 mm) affords the fastest melting, driven by unobstructed natural convection and conduction. In other hand, incremental air layer thicknesses (1 mm, 2 mm, 3 mm) have introduced enlightened thermal resistance, delaying melting completion by 15 %, 30 %, and 45 %, respectively. In this regard, a 3 mm air layer has exhibited the most noticeable insulating effect, overwhelming the convective flow velocities by 35–40 % and creating non-uniform temperature distributions of 18–22 °C gradients. The obtained results disclose an essential trade-off. This is specifically disclosed as while air layers can enhance insulation, they obstruct heat transfer competence, extending the melting duration from 85 min (0 mm) to 123 min (3 mm). This research delivers actionable visions for optimising air gap design in PCM-based systems, balancing thermal regulation requirements with energy storage performance. The associated results are predominantly relevant for applications necessitating detailed thermal management, such as building-integrated TES and electronic cooling, where hemispherical enclosures offer geometric advantages.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"27 ","pages":"Article 101261"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725002083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Phase change materials (PCMs) in thermal energy storage systems often encounter unintended air gaps that critically affect performance, yet their effects in hemispherical enclosures remain unexplored. This research delves into the critical role of air layer thickness in modulating the melting kinetics and heat transfer performance of PCM within horizontally oriented hemispherical enclosures—a configuration with considerable applications for thermal energy storage (TES) systems. This research has systematically quantified how air layer thickness (0–3 mm) affects PCM melting dynamics using advanced ANSYS/FLUENT 16 simulations. The absence of an air layer (0 mm) affords the fastest melting, driven by unobstructed natural convection and conduction. In other hand, incremental air layer thicknesses (1 mm, 2 mm, 3 mm) have introduced enlightened thermal resistance, delaying melting completion by 15 %, 30 %, and 45 %, respectively. In this regard, a 3 mm air layer has exhibited the most noticeable insulating effect, overwhelming the convective flow velocities by 35–40 % and creating non-uniform temperature distributions of 18–22 °C gradients. The obtained results disclose an essential trade-off. This is specifically disclosed as while air layers can enhance insulation, they obstruct heat transfer competence, extending the melting duration from 85 min (0 mm) to 123 min (3 mm). This research delivers actionable visions for optimising air gap design in PCM-based systems, balancing thermal regulation requirements with energy storage performance. The associated results are predominantly relevant for applications necessitating detailed thermal management, such as building-integrated TES and electronic cooling, where hemispherical enclosures offer geometric advantages.
空气层厚度对水平取向半球形相变材料外壳熔化动力学和传热的影响
相变材料(pcm)在热储能系统中经常遇到意想不到的气隙,这严重影响了性能,但它们在半球形外壳中的影响仍未被研究。本研究深入探讨了空气层厚度在调节水平定向半球形外壳内PCM熔化动力学和传热性能中的关键作用,这种结构在热储能(TES)系统中具有相当大的应用。本研究使用先进的ANSYS/FLUENT 16模拟系统地量化了空气层厚度(0-3 mm)对PCM熔化动力学的影响。由于没有空气层(0毫米),在不受阻碍的自然对流和传导的驱动下,熔化速度最快。另一方面,增加空气层厚度(1毫米、2毫米、3毫米)会导致热阻增加,分别使熔化完成延迟15%、30%和45%。在这方面,3毫米的空气层表现出最明显的绝缘效果,压倒了35 - 40%的对流流动速度,并造成了18-22°C梯度的不均匀温度分布。获得的结果揭示了一个重要的权衡。这是特别公开的,虽然空气层可以增强绝缘,但它们阻碍了传热能力,将熔化持续时间从85分钟(0毫米)延长到123分钟(3毫米)。这项研究为优化基于pcm系统的气隙设计提供了可行的愿景,平衡了热调节要求和储能性能。相关结果主要与需要详细热管理的应用相关,例如建筑集成TES和电子冷却,其中半球形外壳具有几何优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信