{"title":"Multi-purpose immobilization of lipase onto modified magnetic nanoparticles: Characterization and enhancement of enzymatic interesterification","authors":"Hui Fang , Yuanyuan Deng , Zhihao Zhao, Jiarui Zeng, Mingwei Zhang, Pengfei Zhou","doi":"10.1016/j.bej.2025.109794","DOIUrl":null,"url":null,"abstract":"<div><div>Improving catalytic performance represents a highly desirable but challenging objective for the immobilization of biocatalysts. A novel biocatalyst of ANL@Fe<sub>3</sub>O<sub>4</sub>-SiO<sub>2</sub>-APTES was fabricated by immobilizing <em>Aspergillus niger</em> lipase (ANL) onto amino-alkyl group-modified magnetic nanoparticles. This biocatalyst exhibited an enzyme loading of 127.68 mg/g and the specific activity of 1132.26 U/g. The superior activity and recyclability of ANL@Fe<sub>3</sub>O<sub>4</sub>-SiO<sub>2</sub>-APTES was validated. The outstanding performance for the enzymatic interesterification (EIE) of palm stearin (PS) and rice bran oils (RBO) was observed. The significantly decreased the solid fat content (SFC) and enhanced crystallization rate of oils was achieved, as well as the β' type of oils after EIE was obtained. Moreover, molecular dynamics simulations were conducted to elucidate the underlying catalytic mechanism of EIE. This study proposes a highly efficient and sustainable approach for the chemical modification of lipids, thereby promoting its broad application in the food industry.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"221 ","pages":"Article 109794"},"PeriodicalIF":3.7000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X25001688","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Improving catalytic performance represents a highly desirable but challenging objective for the immobilization of biocatalysts. A novel biocatalyst of ANL@Fe3O4-SiO2-APTES was fabricated by immobilizing Aspergillus niger lipase (ANL) onto amino-alkyl group-modified magnetic nanoparticles. This biocatalyst exhibited an enzyme loading of 127.68 mg/g and the specific activity of 1132.26 U/g. The superior activity and recyclability of ANL@Fe3O4-SiO2-APTES was validated. The outstanding performance for the enzymatic interesterification (EIE) of palm stearin (PS) and rice bran oils (RBO) was observed. The significantly decreased the solid fat content (SFC) and enhanced crystallization rate of oils was achieved, as well as the β' type of oils after EIE was obtained. Moreover, molecular dynamics simulations were conducted to elucidate the underlying catalytic mechanism of EIE. This study proposes a highly efficient and sustainable approach for the chemical modification of lipids, thereby promoting its broad application in the food industry.
期刊介绍:
The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology.
The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields:
Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics
Biosensors and Biodevices including biofabrication and novel fuel cell development
Bioseparations including scale-up and protein refolding/renaturation
Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells
Bioreactor Systems including characterization, optimization and scale-up
Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization
Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals
Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release
Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites
Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation
Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis
Protein Engineering including enzyme engineering and directed evolution.