{"title":"Properly colored even cycles in edge-colored complete balanced bipartite graphs","authors":"Shanshan Guo , Fei Huang , Jinjiang Yuan , C.T. Ng , T.C.E. Cheng","doi":"10.1016/j.disc.2025.114575","DOIUrl":null,"url":null,"abstract":"<div><div>Consider a complete balanced bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> and let <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow><mrow><mi>c</mi></mrow></msubsup></math></span> be an edge-colored version of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> that is obtained from <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> by having each edge assigned a certain color. A subgraph <em>H</em> of <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow><mrow><mi>c</mi></mrow></msubsup></math></span> is called properly colored (PC) if every two adjacent edges of <em>H</em> have distinct colors. <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow><mrow><mi>c</mi></mrow></msubsup></math></span> is called properly vertex-even-pancyclic if for every vertex <span><math><mi>u</mi><mo>∈</mo><mi>V</mi><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow><mrow><mi>c</mi></mrow></msubsup><mo>)</mo></math></span> and for every even integer <em>k</em> with <span><math><mn>4</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mn>2</mn><mi>n</mi></math></span>, there exists a PC <em>k</em>-cycle containing <em>u</em>. The minimum color degree <span><math><msup><mrow><mi>δ</mi></mrow><mrow><mi>c</mi></mrow></msup><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow><mrow><mi>c</mi></mrow></msubsup><mo>)</mo></math></span> of <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow><mrow><mi>c</mi></mrow></msubsup></math></span> is the largest integer <em>k</em> such that for every vertex <em>v</em>, there are at least <em>k</em> distinct colors on the edges incident to <em>v</em>. In this paper we study the existence of PC even cycles in <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow><mrow><mi>c</mi></mrow></msubsup></math></span>. We first show that, for every integer <span><math><mi>t</mi><mo>≥</mo><mn>3</mn></math></span>, every <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow><mrow><mi>c</mi></mrow></msubsup></math></span> with <span><math><msup><mrow><mi>δ</mi></mrow><mrow><mi>c</mi></mrow></msup><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow><mrow><mi>c</mi></mrow></msubsup><mo>)</mo><mo>≥</mo><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>+</mo><mi>t</mi></math></span> contains a PC 2-factor <em>H</em> such that every cycle of <em>H</em> has a length of at least <em>t</em>. By using the probabilistic method and absorbing technique, we use the above result to further show that, for every <span><math><mi>ε</mi><mo>></mo><mn>0</mn></math></span>, there exists an integer <span><math><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>ε</mi><mo>)</mo></math></span> such that every <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow><mrow><mi>c</mi></mrow></msubsup></math></span> with <span><math><mi>n</mi><mo>≥</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>ε</mi><mo>)</mo></math></span> is properly vertex-even-pancyclic, provided that <span><math><msup><mrow><mi>δ</mi></mrow><mrow><mi>c</mi></mrow></msup><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow><mrow><mi>c</mi></mrow></msubsup><mo>)</mo><mo>≥</mo><mo>(</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>+</mo><mi>ε</mi><mo>)</mo><mi>n</mi></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 11","pages":"Article 114575"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001839","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Consider a complete balanced bipartite graph and let be an edge-colored version of that is obtained from by having each edge assigned a certain color. A subgraph H of is called properly colored (PC) if every two adjacent edges of H have distinct colors. is called properly vertex-even-pancyclic if for every vertex and for every even integer k with , there exists a PC k-cycle containing u. The minimum color degree of is the largest integer k such that for every vertex v, there are at least k distinct colors on the edges incident to v. In this paper we study the existence of PC even cycles in . We first show that, for every integer , every with contains a PC 2-factor H such that every cycle of H has a length of at least t. By using the probabilistic method and absorbing technique, we use the above result to further show that, for every , there exists an integer such that every with is properly vertex-even-pancyclic, provided that .
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.