Properly colored even cycles in edge-colored complete balanced bipartite graphs

IF 0.7 3区 数学 Q2 MATHEMATICS
Shanshan Guo , Fei Huang , Jinjiang Yuan , C.T. Ng , T.C.E. Cheng
{"title":"Properly colored even cycles in edge-colored complete balanced bipartite graphs","authors":"Shanshan Guo ,&nbsp;Fei Huang ,&nbsp;Jinjiang Yuan ,&nbsp;C.T. Ng ,&nbsp;T.C.E. Cheng","doi":"10.1016/j.disc.2025.114575","DOIUrl":null,"url":null,"abstract":"<div><div>Consider a complete balanced bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> and let <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow><mrow><mi>c</mi></mrow></msubsup></math></span> be an edge-colored version of <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> that is obtained from <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub></math></span> by having each edge assigned a certain color. A subgraph <em>H</em> of <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow><mrow><mi>c</mi></mrow></msubsup></math></span> is called properly colored (PC) if every two adjacent edges of <em>H</em> have distinct colors. <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow><mrow><mi>c</mi></mrow></msubsup></math></span> is called properly vertex-even-pancyclic if for every vertex <span><math><mi>u</mi><mo>∈</mo><mi>V</mi><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow><mrow><mi>c</mi></mrow></msubsup><mo>)</mo></math></span> and for every even integer <em>k</em> with <span><math><mn>4</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mn>2</mn><mi>n</mi></math></span>, there exists a PC <em>k</em>-cycle containing <em>u</em>. The minimum color degree <span><math><msup><mrow><mi>δ</mi></mrow><mrow><mi>c</mi></mrow></msup><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow><mrow><mi>c</mi></mrow></msubsup><mo>)</mo></math></span> of <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow><mrow><mi>c</mi></mrow></msubsup></math></span> is the largest integer <em>k</em> such that for every vertex <em>v</em>, there are at least <em>k</em> distinct colors on the edges incident to <em>v</em>. In this paper we study the existence of PC even cycles in <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow><mrow><mi>c</mi></mrow></msubsup></math></span>. We first show that, for every integer <span><math><mi>t</mi><mo>≥</mo><mn>3</mn></math></span>, every <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow><mrow><mi>c</mi></mrow></msubsup></math></span> with <span><math><msup><mrow><mi>δ</mi></mrow><mrow><mi>c</mi></mrow></msup><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow><mrow><mi>c</mi></mrow></msubsup><mo>)</mo><mo>≥</mo><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>+</mo><mi>t</mi></math></span> contains a PC 2-factor <em>H</em> such that every cycle of <em>H</em> has a length of at least <em>t</em>. By using the probabilistic method and absorbing technique, we use the above result to further show that, for every <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span>, there exists an integer <span><math><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>ε</mi><mo>)</mo></math></span> such that every <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow><mrow><mi>c</mi></mrow></msubsup></math></span> with <span><math><mi>n</mi><mo>≥</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>ε</mi><mo>)</mo></math></span> is properly vertex-even-pancyclic, provided that <span><math><msup><mrow><mi>δ</mi></mrow><mrow><mi>c</mi></mrow></msup><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow><mrow><mi>c</mi></mrow></msubsup><mo>)</mo><mo>≥</mo><mo>(</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>+</mo><mi>ε</mi><mo>)</mo><mi>n</mi></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 11","pages":"Article 114575"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001839","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Consider a complete balanced bipartite graph Kn,n and let Kn,nc be an edge-colored version of Kn,n that is obtained from Kn,n by having each edge assigned a certain color. A subgraph H of Kn,nc is called properly colored (PC) if every two adjacent edges of H have distinct colors. Kn,nc is called properly vertex-even-pancyclic if for every vertex uV(Kn,nc) and for every even integer k with 4k2n, there exists a PC k-cycle containing u. The minimum color degree δc(Kn,nc) of Kn,nc is the largest integer k such that for every vertex v, there are at least k distinct colors on the edges incident to v. In this paper we study the existence of PC even cycles in Kn,nc. We first show that, for every integer t3, every Kn,nc with δc(Kn,nc)2n3+t contains a PC 2-factor H such that every cycle of H has a length of at least t. By using the probabilistic method and absorbing technique, we use the above result to further show that, for every ε>0, there exists an integer n0(ε) such that every Kn,nc with nn0(ε) is properly vertex-even-pancyclic, provided that δc(Kn,nc)(23+ε)n.
边色完全平衡二部图中适当着色的偶环
考虑一个完全平衡二部图Kn,n,设Kn,nc为Kn,n的边色版本,它是由Kn,n通过赋予每条边特定的颜色得到的。如果一个Kn,nc的子图H的每两个相邻边都有不同的颜色,则称其为适当着色(PC)。如果对于每一个顶点u∈V(Kn,nc),并且对于每一个4≤k≤2n的偶数k,存在一个包含u的PC - k环,那么Kn,nc的最小色度δc(Kn,nc)是最大的整数k,使得对于每一个顶点V,在V所关联的边上至少有k种不同的颜色,本文研究了Kn,nc中PC偶环的存在性。我们首先证明,对于每一个整数t≥3,每一个Kn, δc(Kn,nc)≥2n3+t的nc都包含一个pc2因子H,使得H的每一个循环长度至少为t。利用上述结果,我们进一步证明,对于每一个ε>;0,存在一个整数n0(ε),使得每一个Kn,n≥n0(ε)的nc在δc(Kn,nc)≥(23+ε)n的条件下,都是适当的顶点偶数全循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信