Glyphosate Is Converted into Energy in a Microfluidic Fuel Cell Equipped with a Low-Content Ni Anode and a Metal-Free Cathode

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Willy Bellard Kira, Daniel F. Costa-Filho, Cinthia R. Zanata, Isabel M. C. de Alcantara, Jefferson Bettini, Flávio L. Souza, Heberton Wender and Cauê A. Martins*, 
{"title":"Glyphosate Is Converted into Energy in a Microfluidic Fuel Cell Equipped with a Low-Content Ni Anode and a Metal-Free Cathode","authors":"Willy Bellard Kira,&nbsp;Daniel F. Costa-Filho,&nbsp;Cinthia R. Zanata,&nbsp;Isabel M. C. de Alcantara,&nbsp;Jefferson Bettini,&nbsp;Flávio L. Souza,&nbsp;Heberton Wender and Cauê A. Martins*,&nbsp;","doi":"10.1021/acsomega.5c0160610.1021/acsomega.5c01606","DOIUrl":null,"url":null,"abstract":"<p >Glyphosate, a widely used herbicide, poses significant environmental and health risks due to its persistence and potential toxicity. Existing mitigation methods often face challenges such as incomplete degradation or the generation of harmful byproducts, in addition to consuming energy to operate. Herein, we report the first demonstration of glyphosate being directly used as a fuel in a microfluidic fuel cell (μFC), enabling simultaneous energy generation and pollutant degradation. The μFC features a nickel-sputtered carbon paper (Ni/CP) anode and a metal-free carbon paper (CP) cathode. The sputtering process ensures the formation of well-dispersed, high-purity Ni nanoclusters, enhancing surface activity and catalytic performance with ultralow metal loading. Coupled with hypochlorous acid (HClO) reduction on the cathode, the μFC achieved a maximum power density of 0.18 mW cm<sup>–2</sup> and glyphosate conversion efficiencies exceeding 99% for diluted solutions (16.2 ppm) and 82% for concentrated solutions (29.6 ppm). High-performance liquid chromatography confirmed the degradation of glyphosate to levels below the World Health Organization’s recommended limit of 0.9 mg L<sup>–1</sup>. Although additional research on the product of the μFC is necessary, this report on a membraneless μFC utilizing glyphosate as the sole energy source in a mixed-media environment shows energy recovery from an environmental pollutant under zero-bias conditions. This scalable, cost-effective system highlights the potential of integrating advanced nanostructured materials and electrochemical techniques for simultaneous pollutant removal and sustainable energy production.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 19","pages":"19939–19949 19939–19949"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.5c01606","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.5c01606","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Glyphosate, a widely used herbicide, poses significant environmental and health risks due to its persistence and potential toxicity. Existing mitigation methods often face challenges such as incomplete degradation or the generation of harmful byproducts, in addition to consuming energy to operate. Herein, we report the first demonstration of glyphosate being directly used as a fuel in a microfluidic fuel cell (μFC), enabling simultaneous energy generation and pollutant degradation. The μFC features a nickel-sputtered carbon paper (Ni/CP) anode and a metal-free carbon paper (CP) cathode. The sputtering process ensures the formation of well-dispersed, high-purity Ni nanoclusters, enhancing surface activity and catalytic performance with ultralow metal loading. Coupled with hypochlorous acid (HClO) reduction on the cathode, the μFC achieved a maximum power density of 0.18 mW cm–2 and glyphosate conversion efficiencies exceeding 99% for diluted solutions (16.2 ppm) and 82% for concentrated solutions (29.6 ppm). High-performance liquid chromatography confirmed the degradation of glyphosate to levels below the World Health Organization’s recommended limit of 0.9 mg L–1. Although additional research on the product of the μFC is necessary, this report on a membraneless μFC utilizing glyphosate as the sole energy source in a mixed-media environment shows energy recovery from an environmental pollutant under zero-bias conditions. This scalable, cost-effective system highlights the potential of integrating advanced nanostructured materials and electrochemical techniques for simultaneous pollutant removal and sustainable energy production.

在配备低含量镍阳极和无金属阴极的微流体燃料电池中,草甘膦转化为能量
草甘膦是一种广泛使用的除草剂,由于其持久性和潜在毒性,对环境和健康构成重大风险。现有的缓解方法往往面临诸如不完全降解或产生有害副产品等挑战,此外还要消耗能源来运行。在此,我们报告了草甘膦直接用作微流体燃料电池(μFC)燃料的首次演示,实现了同时发电和污染物降解。该μFC采用镍溅射碳纸(Ni/CP)阳极和无金属碳纸(CP)阴极。溅射工艺确保形成分散良好、高纯度的Ni纳米团簇,提高了表面活性和超低金属负载的催化性能。通过在阴极上进行次氯酸还原,μFC获得了0.18 mW cm-2的最大功率密度,在稀释溶液(16.2 ppm)和浓溶液(29.6 ppm)中草甘膦的转化效率分别超过99%和82%。高效液相色谱法证实,草甘膦的降解水平低于世界卫生组织建议的0.9 mg L-1的限值。虽然对μFC产物的进一步研究是必要的,但在混合介质环境中利用草甘膦作为唯一能量来源的无膜μFC的报告显示,在零偏倚条件下,从环境污染物中回收能量。这种可扩展的、具有成本效益的系统突出了集成先进纳米结构材料和电化学技术的潜力,可以同时去除污染物和可持续能源生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信