Comparison of Machine Learning Techniques for Mineral Resource Categorization in a Copper Deposit in Peru

IF 4.8 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Marco A. Cotrina-Teatino, Jairo J. Marquina-Araujo, Álvaro I. Riquelme
{"title":"Comparison of Machine Learning Techniques for Mineral Resource Categorization in a Copper Deposit in Peru","authors":"Marco A. Cotrina-Teatino, Jairo J. Marquina-Araujo, Álvaro I. Riquelme","doi":"10.1007/s11053-025-10505-x","DOIUrl":null,"url":null,"abstract":"<p>The primary objective of this study was to evaluate the effectiveness of three machine learning techniques in the confidence categorization of mineral resources within a copper deposit in Peru: extreme gradient boosting (XGBoost), random forest (RF), and deep neural network (DNN). To achieve this, geostatistical and geometric datasets were employed to categorize mineral resources into measured, indicated, and inferred categories. The dataset included ordinary kriging estimates, kriging variance, average distances, the number of composites, the kriging Lagrangian, and geological confidence. This dataset was used to train the models, followed by the application of smoothing techniques to the initial classification results to ensure a spatially coherent representation of the deposit. The results indicate that the RF model achieved the highest overall accuracy (94%), categorizing 1403.70 million tons (Mt) as measured resources (average grade of 0.43%), 2230.58 Mt as indicated resources (average grade of 0.33%), and 2225.08 Mt as inferred resources (average grade of 0.31%). XGBoost classified a slightly higher tonnage of measured resources (1412.35 Mt) with average accuracy of 91%, while DNN excelled in inferred resources, classifying 2254.64 Mt with accuracy of 93%. Smoothing improved the transitions between categories, reducing discontinuities and providing a more coherent representation of the deposit. The study concluded that machine learning techniques are robust and accurate tools for mineral resource categorization, particularly in geologically complex deposits.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"97 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-025-10505-x","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The primary objective of this study was to evaluate the effectiveness of three machine learning techniques in the confidence categorization of mineral resources within a copper deposit in Peru: extreme gradient boosting (XGBoost), random forest (RF), and deep neural network (DNN). To achieve this, geostatistical and geometric datasets were employed to categorize mineral resources into measured, indicated, and inferred categories. The dataset included ordinary kriging estimates, kriging variance, average distances, the number of composites, the kriging Lagrangian, and geological confidence. This dataset was used to train the models, followed by the application of smoothing techniques to the initial classification results to ensure a spatially coherent representation of the deposit. The results indicate that the RF model achieved the highest overall accuracy (94%), categorizing 1403.70 million tons (Mt) as measured resources (average grade of 0.43%), 2230.58 Mt as indicated resources (average grade of 0.33%), and 2225.08 Mt as inferred resources (average grade of 0.31%). XGBoost classified a slightly higher tonnage of measured resources (1412.35 Mt) with average accuracy of 91%, while DNN excelled in inferred resources, classifying 2254.64 Mt with accuracy of 93%. Smoothing improved the transitions between categories, reducing discontinuities and providing a more coherent representation of the deposit. The study concluded that machine learning techniques are robust and accurate tools for mineral resource categorization, particularly in geologically complex deposits.

秘鲁某铜矿床矿产资源分类的机器学习技术比较
本研究的主要目的是评估三种机器学习技术在秘鲁铜矿矿产资源置信分类中的有效性:极端梯度增强(XGBoost)、随机森林(RF)和深度神经网络(DNN)。为此,利用地质统计学和几何数据集将矿产资源分为测量类、指示类和推断类。该数据集包括普通克里格估计、克里格方差、平均距离、复合数量、克里格拉格朗日和地质置信度。该数据集用于训练模型,然后将平滑技术应用于初始分类结果,以确保矿床的空间连贯表示。结果表明,RF模型获得了最高的整体精度(94%),将140370万吨(Mt)分类为实测资源(平均品位为0.43%),22300.58 Mt为指示资源(平均品位为0.33%),2225.08 Mt为推断资源(平均品位为0.31%)。XGBoost对测量资源的分类吨位略高(1412.35 Mt),平均准确率为91%,而DNN在推断资源方面表现出色,分类吨位为2254.64 Mt,准确率为93%。平滑改善了类别之间的过渡,减少了不连续性,并提供了更连贯的矿床表示。该研究得出结论,机器学习技术是矿产资源分类的强大而准确的工具,特别是在地质复杂的矿床中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Natural Resources Research
Natural Resources Research Environmental Science-General Environmental Science
CiteScore
11.90
自引率
11.10%
发文量
151
期刊介绍: This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信