Retraction: Cation substitution effects (Mn, Ni, and Zn) on ZIF-67 derived spinel modified with 3DGO for the detection of NO2 gas with high sensitivity and selectivity
Banalata Maji, Adyasha Das, Bapun Barik and Priyabrat Dash
{"title":"Retraction: Cation substitution effects (Mn, Ni, and Zn) on ZIF-67 derived spinel modified with 3DGO for the detection of NO2 gas with high sensitivity and selectivity","authors":"Banalata Maji, Adyasha Das, Bapun Barik and Priyabrat Dash","doi":"10.1039/D5EN90026C","DOIUrl":null,"url":null,"abstract":"<p >Retraction of ‘Cation substitution effects (Mn, Ni, and Zn) on ZIF-67 derived spinel modified with 3DGO for the detection of NO<small><sub>2</sub></small> gas with high sensitivity and selectivity’ by Banalata Maji <em>et al.</em>, <em>Environ. Sci.: Nano</em>, 2024, <strong>11</strong>, 3637–3656, https://doi.org/10.1039/D3EN00205E.</p>","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":" 6","pages":" 3380-3380"},"PeriodicalIF":5.8000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/en/d5en90026c?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/en/d5en90026c","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Retraction of ‘Cation substitution effects (Mn, Ni, and Zn) on ZIF-67 derived spinel modified with 3DGO for the detection of NO2 gas with high sensitivity and selectivity’ by Banalata Maji et al., Environ. Sci.: Nano, 2024, 11, 3637–3656, https://doi.org/10.1039/D3EN00205E.
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis