Asael Roichman, Qianying Zuo, Sunghoon Hwang, Wenyun Lu, Ricardo A. Cordova, Michael R. MacArthur, Jacob A. Boyer, Sarah J. Mitchell, Jesse Powers, Sophia A. Koval, Craig J. Hunter, Jamie Rijmers, Rolf-Peter Ryseck, Jenna E. AbuSalim, Seema Chatterjee, Won Dong Lee, Xincheng Xu, Xi Xing, Zihong Chen, Xianfeng Zeng, Joshua D. Rabinowitz
{"title":"Microbiome metabolism of dietary phytochemicals controls the anticancer activity of PI3K inhibitors","authors":"Asael Roichman, Qianying Zuo, Sunghoon Hwang, Wenyun Lu, Ricardo A. Cordova, Michael R. MacArthur, Jacob A. Boyer, Sarah J. Mitchell, Jesse Powers, Sophia A. Koval, Craig J. Hunter, Jamie Rijmers, Rolf-Peter Ryseck, Jenna E. AbuSalim, Seema Chatterjee, Won Dong Lee, Xincheng Xu, Xi Xing, Zihong Chen, Xianfeng Zeng, Joshua D. Rabinowitz","doi":"10.1016/j.cell.2025.04.041","DOIUrl":null,"url":null,"abstract":"Phosphatidylinositol 3-kinase (PI3K) signaling is both the effector pathway of insulin and among the most frequently activated pathways in human cancer. In murine cancer models, the efficacy of PI3K inhibitors is dramatically enhanced by a ketogenic diet, with a proposed mechanism involving dietary suppression of insulin. Here, we confirm profound diet-PI3K anticancer synergy but show that it is, surprisingly, unrelated to diet macronutrient composition. Instead, the diet-PI3K interaction involves microbiome metabolism of ingested phytochemicals. Specifically, murine ketogenic diet lacks the complex spectrum of phytochemicals found in standard chow, including the soy phytochemicals soyasaponins. We find that soyasaponins are converted by the microbiome into inducers of hepatic cytochrome P450 enzymes, and thereby lower PI3K inhibitor blood levels and anticancer activity. A high-carbohydrate, low-phytochemical diet synergizes with PI3K inhibition to treat cancer in mice, as do antibiotics that curtail the gut microbiome. Thus, diet impacts anticancer drug activity through phytochemical-microbiome-liver interactions.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"121 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2025.04.041","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Phosphatidylinositol 3-kinase (PI3K) signaling is both the effector pathway of insulin and among the most frequently activated pathways in human cancer. In murine cancer models, the efficacy of PI3K inhibitors is dramatically enhanced by a ketogenic diet, with a proposed mechanism involving dietary suppression of insulin. Here, we confirm profound diet-PI3K anticancer synergy but show that it is, surprisingly, unrelated to diet macronutrient composition. Instead, the diet-PI3K interaction involves microbiome metabolism of ingested phytochemicals. Specifically, murine ketogenic diet lacks the complex spectrum of phytochemicals found in standard chow, including the soy phytochemicals soyasaponins. We find that soyasaponins are converted by the microbiome into inducers of hepatic cytochrome P450 enzymes, and thereby lower PI3K inhibitor blood levels and anticancer activity. A high-carbohydrate, low-phytochemical diet synergizes with PI3K inhibition to treat cancer in mice, as do antibiotics that curtail the gut microbiome. Thus, diet impacts anticancer drug activity through phytochemical-microbiome-liver interactions.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.