Fupeng Li , Yun Du , Yumeng Zheng , Yihao Liu , Xinchen Zhu , Yuehan Cui , Yiqi Yang , Qirui Wang , Danru Wang
{"title":"Microenvironment-responsive MOF nanozymes armored cryogels promoted wound healing via rapid hemostasis, infection elimination and angiogenesis","authors":"Fupeng Li , Yun Du , Yumeng Zheng , Yihao Liu , Xinchen Zhu , Yuehan Cui , Yiqi Yang , Qirui Wang , Danru Wang","doi":"10.1016/j.jconrel.2025.113838","DOIUrl":null,"url":null,"abstract":"<div><div>Drug-resistant bacterial and biofilm infections, vascularization disorders, and inadequate hemostasis are the key factors that limit chronic diabetic wound healing. Here, we construct a microenvironment-responsive multifunctional platinum-armed iron-based MOF nanocomposite (Pt@FeMOF) to repair chronic wounds. Under acidic conditions (biofilm environment), Pt@FeMOF nanoparticles (NPs) produce reactive oxygen species via a synergistic Fenton reaction to eliminate both drug-resistant bacteria and their biofilms. Furthermore, based on transcriptomic results and ferroptosis marker evaluation, we reveal that the Pt@FeMOF NPs induce ferroptosis in bacteria via lipid peroxidation, GSH depletion, iron overload, and disruption of arginine metabolism. In addition, the Pt@FeMOF NPs promote vascular repair, possibly by inhibiting oxidative stress-mediated endothelial cell senescence in the microenvironment to restore angiogenesis. Finally, the Pt@FeMOF NPs are loaded into GelMA cryogels to further improve their hemostasis and exudate absorption. In vivo experiments demonstrate that Pt@FeMOF NPs-loaded cryogel dressings effectively promote MRSA- and <em>P. aeruginosa-</em>infected diabetic wounds. This ferroptosis-like antibacterial strategy may provide novel insights into the treatment of drug-resistant bacterial infections and fight against biofilm-associated infections. The proposed tactic provides a promising approach for the clinical treatment of diabetic wounds.</div></div>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":"384 ","pages":"Article 113838"},"PeriodicalIF":10.5000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168365925004584","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Drug-resistant bacterial and biofilm infections, vascularization disorders, and inadequate hemostasis are the key factors that limit chronic diabetic wound healing. Here, we construct a microenvironment-responsive multifunctional platinum-armed iron-based MOF nanocomposite (Pt@FeMOF) to repair chronic wounds. Under acidic conditions (biofilm environment), Pt@FeMOF nanoparticles (NPs) produce reactive oxygen species via a synergistic Fenton reaction to eliminate both drug-resistant bacteria and their biofilms. Furthermore, based on transcriptomic results and ferroptosis marker evaluation, we reveal that the Pt@FeMOF NPs induce ferroptosis in bacteria via lipid peroxidation, GSH depletion, iron overload, and disruption of arginine metabolism. In addition, the Pt@FeMOF NPs promote vascular repair, possibly by inhibiting oxidative stress-mediated endothelial cell senescence in the microenvironment to restore angiogenesis. Finally, the Pt@FeMOF NPs are loaded into GelMA cryogels to further improve their hemostasis and exudate absorption. In vivo experiments demonstrate that Pt@FeMOF NPs-loaded cryogel dressings effectively promote MRSA- and P. aeruginosa-infected diabetic wounds. This ferroptosis-like antibacterial strategy may provide novel insights into the treatment of drug-resistant bacterial infections and fight against biofilm-associated infections. The proposed tactic provides a promising approach for the clinical treatment of diabetic wounds.
期刊介绍:
The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System.
Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries.
Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.