Suppressing COx in oxidative dehydrogenation of propane with dual-atom catalysts

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yongbin Yao, Jingnan Wang, Fei Lu, Wenlin Li, Bingbao Mei, Lifeng Zhang, Wensheng Yan, Fangli Yuan, Guiyuan Jiang, Sanjaya D. Senanayake, Xi Wang
{"title":"Suppressing COx in oxidative dehydrogenation of propane with dual-atom catalysts","authors":"Yongbin Yao, Jingnan Wang, Fei Lu, Wenlin Li, Bingbao Mei, Lifeng Zhang, Wensheng Yan, Fangli Yuan, Guiyuan Jiang, Sanjaya D. Senanayake, Xi Wang","doi":"10.1038/s41467-025-59376-z","DOIUrl":null,"url":null,"abstract":"<p>Oxidative dehydrogenation of propane (ODHP) is a promising route for propylene production, but achieving high selectivity towards propylene while minimizing CO<sub>x</sub> byproducts remains a significant challenge for conventional metal oxide catalysts. Here we propose a solution to this challenge by employing atomically dispersed dual-atom catalysts (M<sub>1</sub>M'<sub>1</sub>-TiO<sub>2</sub> DACs). Ni<sub>1</sub>Fe<sub>1</sub>-TiO<sub>2</sub> DACs exhibit an ultralow CO<sub>x</sub> selectivity of 5.2% at a high propane conversion of 46.1% and 520 °C, with stable performance for over 1000 hours. Mechanistic investigations reveal that these catalysts operate via a cooperative Langmuir-Hinshelwood mechanism, distinct from the Mars-van Krevelen mechanism typical of metal oxides. This cooperative pathway facilitates efficient conversion of propane and oxygen into propylene at the dual-atom interface. The superior selectivity arises from facile olefin desorption from the dual-atom sites and suppressed formation of electrophilic oxygen species, which are preferentially adsorbed on Fe<sub>1</sub> sites rather than oxygen vacancies. This work highlights the potential of dual-atom catalysts for highly selective ODHP and provides insights into their unique catalytic mechanism.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"41 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59376-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Oxidative dehydrogenation of propane (ODHP) is a promising route for propylene production, but achieving high selectivity towards propylene while minimizing COx byproducts remains a significant challenge for conventional metal oxide catalysts. Here we propose a solution to this challenge by employing atomically dispersed dual-atom catalysts (M1M'1-TiO2 DACs). Ni1Fe1-TiO2 DACs exhibit an ultralow COx selectivity of 5.2% at a high propane conversion of 46.1% and 520 °C, with stable performance for over 1000 hours. Mechanistic investigations reveal that these catalysts operate via a cooperative Langmuir-Hinshelwood mechanism, distinct from the Mars-van Krevelen mechanism typical of metal oxides. This cooperative pathway facilitates efficient conversion of propane and oxygen into propylene at the dual-atom interface. The superior selectivity arises from facile olefin desorption from the dual-atom sites and suppressed formation of electrophilic oxygen species, which are preferentially adsorbed on Fe1 sites rather than oxygen vacancies. This work highlights the potential of dual-atom catalysts for highly selective ODHP and provides insights into their unique catalytic mechanism.

Abstract Image

用双原子催化剂抑制丙烷氧化脱氢反应中的COx
丙烷氧化脱氢(ODHP)是一种很有前途的丙烯生产途径,但实现对丙烯的高选择性同时最小化COx副产物仍然是传统金属氧化物催化剂面临的重大挑战。本文提出了一种解决方案,即采用原子分散的双原子催化剂(M1M'1-TiO2 DACs)。Ni1Fe1-TiO2 dac在520℃和46.1%的丙烷转化率下具有5.2%的超低COx选择性,性能稳定超过1000小时。机理研究表明,这些催化剂通过Langmuir-Hinshelwood合作机制起作用,不同于典型的金属氧化物的Mars-van Krevelen机制。这种协同途径促进了丙烷和氧在双原子界面上有效地转化为丙烯。优越的选择性源于烯烃易从双原子位点解吸和抑制亲电氧的形成,亲电氧优先吸附在Fe1位点而不是氧空位上。这项工作突出了双原子催化剂在高选择性odp中的潜力,并为其独特的催化机制提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信