A molecularly engineered large-area nanoporous atomically thin graphene membrane for ion separation

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ziwen Dai, Pengrui Jin, Shushan Yuan, Jiakuan Yang, Kumar Varoon Agrawal, Huanting Wang
{"title":"A molecularly engineered large-area nanoporous atomically thin graphene membrane for ion separation","authors":"Ziwen Dai, Pengrui Jin, Shushan Yuan, Jiakuan Yang, Kumar Varoon Agrawal, Huanting Wang","doi":"10.1038/s41467-025-59625-1","DOIUrl":null,"url":null,"abstract":"<p>Atomically thin graphene membranes with sub-1-nm pores show promise for ion/molecular separation, osmotic energy generation, and energy storage. Narrowing the pore size distribution and controlling the surface charge are essential to achieve these applications. However, nanoporous graphene membranes fabricated via conventional methods possess a broad pore size distribution and inadequately regulated surface charge, limiting their applications. Herein, we present a molecular anchoring approach for scalable synthesis of nanoporous graphene membranes via a bottom-up technique, aiming to narrow the pore size distribution without reducing the pore density while simultaneously adjusting the charge properties of nanopores. By selecting suitable anchoring molecules, the custom-tailored pore size distribution and chemical functionality of nanoporous graphene membranes can be achieved. Leveraging the steric restriction effect, anchoring monomers selectively traverse larger nanopores to form ion-selective plugs, effectively repairing these nanopores. The centimeter-scale nanoporous graphene membrane with an ion-selective plug achieves high separation selectivity (K<sup>+</sup>/Na<sup>+</sup>=20, K<sup>+</sup>/Mg<sup>2+</sup>=330). Theoretical simulations indicate that a smaller pore size, narrow pore size distribution, and positive charge result in a larger energy barrier difference, leading to ultrahigh metal ion selectivity. Furthermore, in treating lithium battery leaching solutions, Li<sup>+</sup>/divalent ions selectivity exceeds 900. These findings provide a way for designing graphene-based membranes.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"128 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59625-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Atomically thin graphene membranes with sub-1-nm pores show promise for ion/molecular separation, osmotic energy generation, and energy storage. Narrowing the pore size distribution and controlling the surface charge are essential to achieve these applications. However, nanoporous graphene membranes fabricated via conventional methods possess a broad pore size distribution and inadequately regulated surface charge, limiting their applications. Herein, we present a molecular anchoring approach for scalable synthesis of nanoporous graphene membranes via a bottom-up technique, aiming to narrow the pore size distribution without reducing the pore density while simultaneously adjusting the charge properties of nanopores. By selecting suitable anchoring molecules, the custom-tailored pore size distribution and chemical functionality of nanoporous graphene membranes can be achieved. Leveraging the steric restriction effect, anchoring monomers selectively traverse larger nanopores to form ion-selective plugs, effectively repairing these nanopores. The centimeter-scale nanoporous graphene membrane with an ion-selective plug achieves high separation selectivity (K+/Na+=20, K+/Mg2+=330). Theoretical simulations indicate that a smaller pore size, narrow pore size distribution, and positive charge result in a larger energy barrier difference, leading to ultrahigh metal ion selectivity. Furthermore, in treating lithium battery leaching solutions, Li+/divalent ions selectivity exceeds 900. These findings provide a way for designing graphene-based membranes.

Abstract Image

一种用于离子分离的分子工程大面积纳米多孔原子薄石墨烯膜
具有亚1纳米孔隙的原子薄石墨烯膜在离子/分子分离、渗透能生成和能量存储方面具有广阔的前景。缩小孔径分布和控制表面电荷是实现这些应用的关键。然而,通过传统方法制备的纳米多孔石墨烯膜具有广泛的孔径分布和不充分调节的表面电荷,限制了其应用。在此,我们提出了一种分子锚定方法,通过自下而上的技术可扩展合成纳米多孔石墨烯膜,旨在在不降低孔密度的情况下缩小孔径分布,同时调节纳米孔的电荷特性。通过选择合适的锚定分子,可以实现纳米多孔石墨烯膜的定制孔径分布和化学功能。利用空间限制效应,锚定单体选择性地穿过较大的纳米孔,形成离子选择性塞,有效地修复这些纳米孔。带有离子选择插头的厘米级纳米多孔石墨烯膜具有很高的分离选择性(K+/Na+=20, K+/Mg2+=330)。理论模拟表明,孔径越小,孔径分布越窄,外加正电荷,能垒差越大,金属离子选择性越高。此外,在处理锂电池浸出液时,Li+/二价离子的选择性超过900。这些发现为设计石墨烯基膜提供了一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信