Jianhua Wu, Zhongxin Chen, Ke Yang, Xin Zhou, Huizhi Li, Zhiyong Wang, Mengyao Su, Rongrong Zhang, Tie Wang, Qikun Hu, Ning Yan, Cuibo Liu, Bin Zhang, Ming Yang, Shibo Xi, Kian Ping Loh
{"title":"Electric bias-induced reversible configuration of single and heteronuclear dual-atom catalysts on 1Tʹ-MoS2","authors":"Jianhua Wu, Zhongxin Chen, Ke Yang, Xin Zhou, Huizhi Li, Zhiyong Wang, Mengyao Su, Rongrong Zhang, Tie Wang, Qikun Hu, Ning Yan, Cuibo Liu, Bin Zhang, Ming Yang, Shibo Xi, Kian Ping Loh","doi":"10.1038/s41565-025-01934-z","DOIUrl":null,"url":null,"abstract":"<p>The development of substrates capable of anchoring single-atom catalysts (SACs) while enabling their dynamic reconfiguration into heteronuclear dual-atom catalysts (DACs) holds considerable promise for electrochemical synthesis, yet remains underexplored. Here we show that electrochemical desulfurization of MoS<sub>2</sub> generates vacancy-rich 1T′ domains, which support high loadings of Cu (7.9 wt%) and Pt (6.7 wt%) SACs that are well-positioned for dynamic sintering to form DACs. Operando X-ray absorption spectroscopy and density functional theory calculations reveal a voltage-driven, reversible transformation between individual Pt/Cu SACs and Cu–Pt DAC configurations during hydrogen evolution reaction potentials. The electric-field-induced Cu–Pt DACs exhibit superior performance in the selective hydrogenation of alkynes compared with their monometallic SAC counterparts. This work underscores vacancy-enriched 1T′-MoS<sub>2</sub> as a versatile platform for high-density SAC deposition, enabling on-demand structural reconfiguration and paving the way for tailored catalyst design in electrosynthesis.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"40 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-025-01934-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of substrates capable of anchoring single-atom catalysts (SACs) while enabling their dynamic reconfiguration into heteronuclear dual-atom catalysts (DACs) holds considerable promise for electrochemical synthesis, yet remains underexplored. Here we show that electrochemical desulfurization of MoS2 generates vacancy-rich 1T′ domains, which support high loadings of Cu (7.9 wt%) and Pt (6.7 wt%) SACs that are well-positioned for dynamic sintering to form DACs. Operando X-ray absorption spectroscopy and density functional theory calculations reveal a voltage-driven, reversible transformation between individual Pt/Cu SACs and Cu–Pt DAC configurations during hydrogen evolution reaction potentials. The electric-field-induced Cu–Pt DACs exhibit superior performance in the selective hydrogenation of alkynes compared with their monometallic SAC counterparts. This work underscores vacancy-enriched 1T′-MoS2 as a versatile platform for high-density SAC deposition, enabling on-demand structural reconfiguration and paving the way for tailored catalyst design in electrosynthesis.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.