Electric bias-induced reversible configuration of single and heteronuclear dual-atom catalysts on 1Tʹ-MoS2

IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jianhua Wu, Zhongxin Chen, Ke Yang, Xin Zhou, Huizhi Li, Zhiyong Wang, Mengyao Su, Rongrong Zhang, Tie Wang, Qikun Hu, Ning Yan, Cuibo Liu, Bin Zhang, Ming Yang, Shibo Xi, Kian Ping Loh
{"title":"Electric bias-induced reversible configuration of single and heteronuclear dual-atom catalysts on 1Tʹ-MoS2","authors":"Jianhua Wu, Zhongxin Chen, Ke Yang, Xin Zhou, Huizhi Li, Zhiyong Wang, Mengyao Su, Rongrong Zhang, Tie Wang, Qikun Hu, Ning Yan, Cuibo Liu, Bin Zhang, Ming Yang, Shibo Xi, Kian Ping Loh","doi":"10.1038/s41565-025-01934-z","DOIUrl":null,"url":null,"abstract":"<p>The development of substrates capable of anchoring single-atom catalysts (SACs) while enabling their dynamic reconfiguration into heteronuclear dual-atom catalysts (DACs) holds considerable promise for electrochemical synthesis, yet remains underexplored. Here we show that electrochemical desulfurization of MoS<sub>2</sub> generates vacancy-rich 1T′ domains, which support high loadings of Cu (7.9 wt%) and Pt (6.7 wt%) SACs that are well-positioned for dynamic sintering to form DACs. Operando X-ray absorption spectroscopy and density functional theory calculations reveal a voltage-driven, reversible transformation between individual Pt/Cu SACs and Cu–Pt DAC configurations during hydrogen evolution reaction potentials. The electric-field-induced Cu–Pt DACs exhibit superior performance in the selective hydrogenation of alkynes compared with their monometallic SAC counterparts. This work underscores vacancy-enriched 1T′-MoS<sub>2</sub> as a versatile platform for high-density SAC deposition, enabling on-demand structural reconfiguration and paving the way for tailored catalyst design in electrosynthesis.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"40 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-025-01934-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of substrates capable of anchoring single-atom catalysts (SACs) while enabling their dynamic reconfiguration into heteronuclear dual-atom catalysts (DACs) holds considerable promise for electrochemical synthesis, yet remains underexplored. Here we show that electrochemical desulfurization of MoS2 generates vacancy-rich 1T′ domains, which support high loadings of Cu (7.9 wt%) and Pt (6.7 wt%) SACs that are well-positioned for dynamic sintering to form DACs. Operando X-ray absorption spectroscopy and density functional theory calculations reveal a voltage-driven, reversible transformation between individual Pt/Cu SACs and Cu–Pt DAC configurations during hydrogen evolution reaction potentials. The electric-field-induced Cu–Pt DACs exhibit superior performance in the selective hydrogenation of alkynes compared with their monometallic SAC counterparts. This work underscores vacancy-enriched 1T′-MoS2 as a versatile platform for high-density SAC deposition, enabling on-demand structural reconfiguration and paving the way for tailored catalyst design in electrosynthesis.

Abstract Image

电偏压诱导的1T′-MoS2单核和异核双原子催化剂的可逆构型
开发能够锚定单原子催化剂(SACs)并使其动态重构为异核双原子催化剂(dac)的底物对电化学合成具有相当大的前景,但仍未得到充分探索。在这里,我们发现MoS2的电化学脱硫产生了富含空位的1T '结构域,支持高负载的Cu (7.9% wt%)和Pt (6.7 wt%) SACs,这些SACs处于动态烧结形成dac的良好位置。Operando x射线吸收光谱和密度泛函理论计算表明,在析氢反应电位中,单个Pt/Cu SACs和Cu - Pt DAC构型之间存在电压驱动的可逆转变。电场诱导的Cu-Pt dac与单金属SAC相比,在炔烃的选择性加氢方面表现出优越的性能。这项工作强调了富含空位的1T’-MoS2作为高密度SAC沉积的通用平台,能够按需进行结构重构,并为电合成中定制催化剂的设计铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature nanotechnology
Nature nanotechnology 工程技术-材料科学:综合
CiteScore
59.70
自引率
0.80%
发文量
196
审稿时长
4-8 weeks
期刊介绍: Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations. Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信