{"title":"Synergistic Boiling Enhancement on Hierarchical Micro-Pit/Carbon Nanotube Surfaces.","authors":"Zhiming Xu,Hongpeng Jiang,Xiaoliang Wang,Zhirong Zhang,Yunfeng Qiu,Jie Xu,Debin Shan,Bin Guo","doi":"10.1021/acsami.5c05497","DOIUrl":null,"url":null,"abstract":"Pool boiling offers exceptional heat transfer performance, making it crucial for advanced thermal management. However, simultaneously optimizing both critical heat flux (CHF) and heat transfer coefficient (HTC) is challenging due to the inherent trade-off between promoting bubble nucleation and mitigating detrimental bubble coalescence. This study presents a micro/nano-hierarchical surface architecture designed to overcome this limitation. Fabricated via laser machining and chemical vapor deposition, the architecture comprises an array of micro pits (MPs) decorated with Co-catalyzed carbon nanotubes (CoCNTs). Computational fluid dynamics (CFD) simulations demonstrate that the MP array enhances HTC by increasing the density of nucleation sites and reducing the bubble departure diameter. Simultaneously, the CoCNTs within the MPs enhance interfacial heat transfer and promote capillary-driven liquid replenishment to the heating surface, effectively mitigating dry-out and significantly improving CHF. The synergistic effects of these micro/nanofeatures yield remarkable performance enhancements on Cu substrates, with the HTC and CHF increasing by 211.5% and 125.2%, respectively, compared to a bare Cu surface. This hierarchical surface design offers a promising strategy for developing high-performance boiling heat transfer surfaces for next-generation thermal management applications.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"77 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c05497","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Pool boiling offers exceptional heat transfer performance, making it crucial for advanced thermal management. However, simultaneously optimizing both critical heat flux (CHF) and heat transfer coefficient (HTC) is challenging due to the inherent trade-off between promoting bubble nucleation and mitigating detrimental bubble coalescence. This study presents a micro/nano-hierarchical surface architecture designed to overcome this limitation. Fabricated via laser machining and chemical vapor deposition, the architecture comprises an array of micro pits (MPs) decorated with Co-catalyzed carbon nanotubes (CoCNTs). Computational fluid dynamics (CFD) simulations demonstrate that the MP array enhances HTC by increasing the density of nucleation sites and reducing the bubble departure diameter. Simultaneously, the CoCNTs within the MPs enhance interfacial heat transfer and promote capillary-driven liquid replenishment to the heating surface, effectively mitigating dry-out and significantly improving CHF. The synergistic effects of these micro/nanofeatures yield remarkable performance enhancements on Cu substrates, with the HTC and CHF increasing by 211.5% and 125.2%, respectively, compared to a bare Cu surface. This hierarchical surface design offers a promising strategy for developing high-performance boiling heat transfer surfaces for next-generation thermal management applications.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.