Avian-Specific Evidence for an Estrogen Receptor Agonism Adverse Outcome Pathway Based on Chicken Embryos and LMH 3D Spheroids Exposed to Ethinylestradiol and Bisphenol A.

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Tasnia Sharin,Kim L Williams,Rudolf W Mueller,Doug Crump,Jason M O'Brien
{"title":"Avian-Specific Evidence for an Estrogen Receptor Agonism Adverse Outcome Pathway Based on Chicken Embryos and LMH 3D Spheroids Exposed to Ethinylestradiol and Bisphenol A.","authors":"Tasnia Sharin,Kim L Williams,Rudolf W Mueller,Doug Crump,Jason M O'Brien","doi":"10.1021/acs.est.4c10887","DOIUrl":null,"url":null,"abstract":"Several adverse outcome pathways (AOPs) describe the effects of endocrine disrupting compounds on estrogen signaling. Substantial data support an AOP related to estrogen receptor (ER) antagonism, leading to decreased fecundity in fish. In this study, data were generated for an ER agonism AOP leading to reduced fecundity in avian species (AOP537). Chicken embryos and the chicken leghorn male hepatoma cell line, LMH, were used to elucidate key events associated with estrogen signaling following exposure to 17α-ethinylestradiol (EE2) and bisphenol A (BPA). Embryos were exposed via egg injection. Viability and hepatic estrogen-responsive gene expression data were collected at midincubation (embryonic day [ED] 11). Changes in plasma vitellogenin (VTG), gonad morphology and growth were evaluated prior to pipping (ED20). Both chemicals dysregulated estrogen-responsive genes in hepatic tissue and increased plasma VTG concentrations. In LMH spheroids, EE2 and BPA altered estrogen-responsive genes and VTG concentrations at 24 and 48 h, respectively. Gonadal histology revealed oocyte-type cells and loss of testicular cords in male embryos exposed to EE2 and BPA. Overall, EE2 and BPA upregulated VTG mRNA expression, increased plasma VTG, and caused impairments in gonadal development. These results contribute avian-specific evidence to support an endocrine disruption AOP describing the relationship between disrupted VTG synthesis and impaired reproduction.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"61 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c10887","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Several adverse outcome pathways (AOPs) describe the effects of endocrine disrupting compounds on estrogen signaling. Substantial data support an AOP related to estrogen receptor (ER) antagonism, leading to decreased fecundity in fish. In this study, data were generated for an ER agonism AOP leading to reduced fecundity in avian species (AOP537). Chicken embryos and the chicken leghorn male hepatoma cell line, LMH, were used to elucidate key events associated with estrogen signaling following exposure to 17α-ethinylestradiol (EE2) and bisphenol A (BPA). Embryos were exposed via egg injection. Viability and hepatic estrogen-responsive gene expression data were collected at midincubation (embryonic day [ED] 11). Changes in plasma vitellogenin (VTG), gonad morphology and growth were evaluated prior to pipping (ED20). Both chemicals dysregulated estrogen-responsive genes in hepatic tissue and increased plasma VTG concentrations. In LMH spheroids, EE2 and BPA altered estrogen-responsive genes and VTG concentrations at 24 and 48 h, respectively. Gonadal histology revealed oocyte-type cells and loss of testicular cords in male embryos exposed to EE2 and BPA. Overall, EE2 and BPA upregulated VTG mRNA expression, increased plasma VTG, and caused impairments in gonadal development. These results contribute avian-specific evidence to support an endocrine disruption AOP describing the relationship between disrupted VTG synthesis and impaired reproduction.
暴露于雌酮和双酚A的鸡胚胎和LMH 3D球体雌激素受体激动作用不良结局通路的鸟类特异性证据。
几种不良结局通路(AOPs)描述了内分泌干扰化合物对雌激素信号的影响。大量数据支持AOP与雌激素受体(ER)拮抗有关,导致鱼类繁殖力下降。在这项研究中,产生了导致鸟类繁殖力降低的内质网激动剂AOP (AOP537)的数据。利用鸡胚胎和鸡leghorn雄性肝癌细胞系LMH,研究暴露于17α-炔雌醇(EE2)和双酚A (BPA)后与雌激素信号通路相关的关键事件。胚胎通过卵子注射暴露。在孵育中期(胚胎日[ED] 11)收集活力和肝脏雌激素应答基因表达数据。血浆卵黄原蛋白(VTG)、性腺形态和生长的变化在穿刺前进行评估(ED20)。这两种化学物质都会失调肝组织中的雌激素反应基因,并增加血浆VTG浓度。在LMH球体中,EE2和BPA分别在24和48 h改变雌激素应答基因和VTG浓度。性腺组织学显示暴露于EE2和BPA的男性胚胎出现卵母细胞型细胞和睾丸索缺失。总的来说,EE2和BPA上调了VTG mRNA的表达,增加了血浆VTG,导致性腺发育受损。这些结果为禽类提供了特异性证据,支持描述VTG合成中断与生殖受损之间关系的内分泌干扰AOP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信