{"title":"mRNAdesigner: an integrated web server for optimizing mRNA design and protein translation in eukaryotes.","authors":"Ouyang Mo,Zhuo Zhang,Xiang Cheng,Liqi Zhu,Kaixiang Zhang,Niubing Zhang,Justin Li,Honglin Li,Shixin Fan,Xuan Li,Pei Hao","doi":"10.1093/nar/gkaf410","DOIUrl":null,"url":null,"abstract":"Messenger RNA (mRNA) therapy has revolutionized modern medicine through its rapid development capabilities and ability to induce effective immune responses, becoming a powerful weapon against infectious diseases. The expression level of target proteins from mRNA sequences is primarily influenced by translational efficiency and stability, which can be significantly enhanced by modifying the 5' and 3' untranslated regions (UTRs), codon adaptation index, GC content, and secondary structure. To address the challenges of optimizing mRNA design, we have developed mRNAdesigner (https://www.biosino.org/mRNAdesigner/), a web server specifically designed to improve mRNA stability and translational efficiency in eukaryotes. Users can input a coding sequence (CDS) along with optional 5' UTR and 3' UTR, and the tool optimizes the CDS by reducing unpaired regions, minimizing complex stem-loop structures, and mitigating the use of rare codons while adhering to user-defined GC content preferences. Additionally, mRNAdesigner identifies optimal UTR sequences to enhance translation efficiency and stability. As an open-access computational resource, mRNAdesigner supports full-length mRNA design, enabling researchers to generate high-expression mRNA sequences for efficient protein production in eukaryotic expression systems, providing extra support for vaccine development and protein therapeutics. This is the first such tool that was made open accessible to the public.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"32 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf410","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Messenger RNA (mRNA) therapy has revolutionized modern medicine through its rapid development capabilities and ability to induce effective immune responses, becoming a powerful weapon against infectious diseases. The expression level of target proteins from mRNA sequences is primarily influenced by translational efficiency and stability, which can be significantly enhanced by modifying the 5' and 3' untranslated regions (UTRs), codon adaptation index, GC content, and secondary structure. To address the challenges of optimizing mRNA design, we have developed mRNAdesigner (https://www.biosino.org/mRNAdesigner/), a web server specifically designed to improve mRNA stability and translational efficiency in eukaryotes. Users can input a coding sequence (CDS) along with optional 5' UTR and 3' UTR, and the tool optimizes the CDS by reducing unpaired regions, minimizing complex stem-loop structures, and mitigating the use of rare codons while adhering to user-defined GC content preferences. Additionally, mRNAdesigner identifies optimal UTR sequences to enhance translation efficiency and stability. As an open-access computational resource, mRNAdesigner supports full-length mRNA design, enabling researchers to generate high-expression mRNA sequences for efficient protein production in eukaryotic expression systems, providing extra support for vaccine development and protein therapeutics. This is the first such tool that was made open accessible to the public.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.