Enhancing Rechargeable Zinc-Air Batteries with Atomically Dispersed Zinc Iron Cobalt Planar Sites on Porous Nitrogen-Doped Carbon.

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-05-19 DOI:10.1021/acsnano.5c05961
Rui Wu,Jiayu Zuo,Chuang Fu,Zhaozhao Zhu,Lei Zhao,Junjie Wang,Qiyu Li,Qian Xue,Zhao Li,Xiaobin Niu,Xueqiang Qi,Na Yang,Jun Song Chen
{"title":"Enhancing Rechargeable Zinc-Air Batteries with Atomically Dispersed Zinc Iron Cobalt Planar Sites on Porous Nitrogen-Doped Carbon.","authors":"Rui Wu,Jiayu Zuo,Chuang Fu,Zhaozhao Zhu,Lei Zhao,Junjie Wang,Qiyu Li,Qian Xue,Zhao Li,Xiaobin Niu,Xueqiang Qi,Na Yang,Jun Song Chen","doi":"10.1021/acsnano.5c05961","DOIUrl":null,"url":null,"abstract":"Rechargeable zinc-air batteries (ZABs) face significant challenges in achieving both high power density and long-term stability, primarily due to limitations in catalytic materials for oxygen electrodes. Here, we present a trimetal planar heterogeneous metal catalyst featuring atomically dispersed ZnN4, FeN4, and CoN4 sites supported on a porous nitrogen-doped carbon substrate (ZnFeCo-NC) through a templating approach. By fine-tuning the content of each metal, the optimized ZnFeCo-NC-based ZAB achieves a high peak power density of 244 mW cm-2 and maintains durable performance for 500 h at 10 mA cm-2. Ab initio molecular dynamics simulations reveal that the ZnFeCo-NC catalyst configuration remains stable at 300 K during the oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) process. Further theoretical calculations demonstrate that the introduction of adsorbed OH groups effectively tunes the electronic structure redistribution of metal active sites, particularly improving the catalytic performance at the Fe site for ORR and the Co site for the OER. These findings provide insights into the rational design of high-performance electrocatalysts in energy storage technologies.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"13 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c05961","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rechargeable zinc-air batteries (ZABs) face significant challenges in achieving both high power density and long-term stability, primarily due to limitations in catalytic materials for oxygen electrodes. Here, we present a trimetal planar heterogeneous metal catalyst featuring atomically dispersed ZnN4, FeN4, and CoN4 sites supported on a porous nitrogen-doped carbon substrate (ZnFeCo-NC) through a templating approach. By fine-tuning the content of each metal, the optimized ZnFeCo-NC-based ZAB achieves a high peak power density of 244 mW cm-2 and maintains durable performance for 500 h at 10 mA cm-2. Ab initio molecular dynamics simulations reveal that the ZnFeCo-NC catalyst configuration remains stable at 300 K during the oxygen reduction reaction (ORR)/oxygen evolution reaction (OER) process. Further theoretical calculations demonstrate that the introduction of adsorbed OH groups effectively tunes the electronic structure redistribution of metal active sites, particularly improving the catalytic performance at the Fe site for ORR and the Co site for the OER. These findings provide insights into the rational design of high-performance electrocatalysts in energy storage technologies.
多孔氮掺杂碳原子分散锌铁钴平面位增强可充电锌-空气电池。
由于氧电极催化材料的限制,可充电锌空气电池(ZABs)在实现高功率密度和长期稳定性方面面临着重大挑战。在这里,我们提出了一种三金属平面非均相金属催化剂,其具有原子分散的ZnN4, FeN4和CoN4位点,通过模板方法支撑在多孔氮掺杂碳衬底(znfox - nc)上。通过微调每种金属的含量,优化后的znfeco - nc基ZAB实现了244 mW cm-2的峰值功率密度,并在10 mA cm-2下保持500小时的耐用性能。从头算分子动力学模拟表明,在氧还原反应(ORR)/析氧反应(OER)过程中,zneco - nc催化剂的构型在300 K时保持稳定。进一步的理论计算表明,吸附OH基团的引入有效地调整了金属活性位点的电子结构重分布,特别是提高了ORR的Fe位点和OER的Co位点的催化性能。这些发现为储能技术中高性能电催化剂的合理设计提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信