FDG-PET intensity normalization improves radiomics- based survival prediction in oropharyngeal cancer patients: a comparison of the SUV with alternative normalization techniques.

Seyedmehdi Payabvash, Kariem Sharaf, Tal Zeevi, Moritz Gross, Amit Mahajan, Benjamin H Kann, Benjamin L Judson, Andrea Schreier, Jasmin Krenn, Manju L Prasad, Barbara Burtness, Mariam Aboian, Martin Canis, Philipp Baumeister, Christoph A Reichel, Stefan P Haider
{"title":"FDG-PET intensity normalization improves radiomics- based survival prediction in oropharyngeal cancer patients: a comparison of the SUV with alternative normalization techniques.","authors":"Seyedmehdi Payabvash, Kariem Sharaf, Tal Zeevi, Moritz Gross, Amit Mahajan, Benjamin H Kann, Benjamin L Judson, Andrea Schreier, Jasmin Krenn, Manju L Prasad, Barbara Burtness, Mariam Aboian, Martin Canis, Philipp Baumeister, Christoph A Reichel, Stefan P Haider","doi":"10.3174/ajnr.A8836","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Despite the widespread research application of radiomics, there is a knowledge gap regarding the optimal voxel intensity normalization strategy for FDG-PET radiomics. We investigated the impact of three normalization strategies on the prognostic utility of individual radiomic features and machine learning models in oropharyngeal squamous cell carcinoma (OPSCC) patients.</p><p><strong>Materials and methods: </strong>We included n=330 (overall survival, OS, study group), n=335 (progression-free survival, PFS, study group) and n=309 (locoregional progression, LRP, study group) OPSCC patients. Three FDG-PET intensity normalization strategies were applied: the conventional body weight-corrected Standardized Uptake Value (SUV), and standardized uptake ratios to the lentiform nucleus and to the cerebellum. The raw PET voxel intensities were also analyzed. To quantify and compare features' association with oncologic outcome, we fitted univariate Cox regression models, calculated Harrell's C-index, and fitted random survival forest (RSF) machine learning algorithms.</p><p><strong>Results: </strong>All normalization strategies tended to improve the prognostic value of radiomic features. Features from lentiform nucleus- normalized PET demonstrated the highest prognostic improvement, with n=750/1037, n=809/1037 and n=652/1037 primary tumor features attaining a significant association with OS, PFS, and LRP, respectively, compared to n=0, n=211, and n=1 SUV-based PET features, respectively. The median C-index of lentiform nucleus-normalized PET features was 0.64, 0.61 and 0.62 for OS, PFS, and LRP, respectively, while SUV-based PET features reached 0.59, 0.58 and 0.60, respectively. The best performing lentiform nucleus- normalization RSF model significantly outperformed the raw PET RSF model in predicting OS (C-index=0.66 vs. C-index=0.57; p=0.019), with model comparisons for PFS and LRP approaching statistical significance (p=0.053 and p=0.084, respectively). In contrast, the best performing SUV-based RSF models were not significantly different from raw PET models.</p><p><strong>Conclusions: </strong>Normalizing PET intensities, especially to the lentiform nucleus, improves the prognostic performance of individual radiomic features and machine learning models in predicting oncologic outcome.</p><p><strong>Abbreviations: </strong>FDG-PET = [18F]fluorodeoxyglucose positron emission tomography; SUV = standardized uptake value; OPSCC = oropharyngeal squamous cell carcinoma; HPV = human papillomavirus; VOI = volume of interest; OS = overall survival; PFS = progression-free survival; LRP = locoregional progression; C-index = Harrell's concordance index; RSF = random survival forest; CV = cross-validation; AUC = area under the curve; SD = standard deviation.</p>","PeriodicalId":93863,"journal":{"name":"AJNR. American journal of neuroradiology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AJNR. American journal of neuroradiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3174/ajnr.A8836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background and purpose: Despite the widespread research application of radiomics, there is a knowledge gap regarding the optimal voxel intensity normalization strategy for FDG-PET radiomics. We investigated the impact of three normalization strategies on the prognostic utility of individual radiomic features and machine learning models in oropharyngeal squamous cell carcinoma (OPSCC) patients.

Materials and methods: We included n=330 (overall survival, OS, study group), n=335 (progression-free survival, PFS, study group) and n=309 (locoregional progression, LRP, study group) OPSCC patients. Three FDG-PET intensity normalization strategies were applied: the conventional body weight-corrected Standardized Uptake Value (SUV), and standardized uptake ratios to the lentiform nucleus and to the cerebellum. The raw PET voxel intensities were also analyzed. To quantify and compare features' association with oncologic outcome, we fitted univariate Cox regression models, calculated Harrell's C-index, and fitted random survival forest (RSF) machine learning algorithms.

Results: All normalization strategies tended to improve the prognostic value of radiomic features. Features from lentiform nucleus- normalized PET demonstrated the highest prognostic improvement, with n=750/1037, n=809/1037 and n=652/1037 primary tumor features attaining a significant association with OS, PFS, and LRP, respectively, compared to n=0, n=211, and n=1 SUV-based PET features, respectively. The median C-index of lentiform nucleus-normalized PET features was 0.64, 0.61 and 0.62 for OS, PFS, and LRP, respectively, while SUV-based PET features reached 0.59, 0.58 and 0.60, respectively. The best performing lentiform nucleus- normalization RSF model significantly outperformed the raw PET RSF model in predicting OS (C-index=0.66 vs. C-index=0.57; p=0.019), with model comparisons for PFS and LRP approaching statistical significance (p=0.053 and p=0.084, respectively). In contrast, the best performing SUV-based RSF models were not significantly different from raw PET models.

Conclusions: Normalizing PET intensities, especially to the lentiform nucleus, improves the prognostic performance of individual radiomic features and machine learning models in predicting oncologic outcome.

Abbreviations: FDG-PET = [18F]fluorodeoxyglucose positron emission tomography; SUV = standardized uptake value; OPSCC = oropharyngeal squamous cell carcinoma; HPV = human papillomavirus; VOI = volume of interest; OS = overall survival; PFS = progression-free survival; LRP = locoregional progression; C-index = Harrell's concordance index; RSF = random survival forest; CV = cross-validation; AUC = area under the curve; SD = standard deviation.

FDG-PET强度归一化改善了口咽癌患者基于放射组学的生存预测:SUV与其他归一化技术的比较。
背景与目的:尽管放射组学的研究应用广泛,但关于FDG-PET放射组学的最佳体素强度归一化策略还存在知识空白。我们研究了三种标准化策略对口咽鳞状细胞癌(OPSCC)患者个体放射学特征和机器学习模型的预后效用的影响。材料和方法:我们纳入了n=330(总生存期,OS,研究组)、n=335(无进展生存期,PFS,研究组)和n=309(局部进展期,LRP,研究组)OPSCC患者。采用三种FDG-PET强度归一化策略:常规体重校正的标准化摄取值(SUV),以及对慢状核和小脑的标准化摄取比。对原始PET体素强度进行了分析。为了量化和比较特征与肿瘤预后的关系,我们拟合了单变量Cox回归模型,计算了Harrell's c指数,并拟合了随机生存森林(RSF)机器学习算法。结果:所有归一化策略均倾向于提高放射学特征的预后价值。相比于n=0、n=211和n=1个基于suv的PET特征,透镜状核标准化PET特征显示出最高的预后改善,n=750/1037、n=809/1037和n=652/1037原发肿瘤特征分别与OS、PFS和LRP显著相关。OS、PFS和LRP的慢状核归一化PET特征的中位c指数分别为0.64、0.61和0.62,而基于suv的PET特征的中位c指数分别为0.59、0.58和0.60。表现最好的透镜状核归一化RSF模型在预测OS方面显著优于原始PET RSF模型(C-index=0.66 vs. C-index=0.57;p=0.019), PFS和LRP的模型比较接近统计学意义(p=0.053和p=0.084)。相比之下,性能最好的suv RSF模型与原始PET模型没有显著差异。结论:规范化PET强度,特别是对透镜状核,提高了个体放射学特征和机器学习模型在预测肿瘤预后方面的预后表现。缩写:FDG-PET = [18F]氟脱氧葡萄糖正电子发射断层扫描;SUV =标准化吸收值;口咽鳞状细胞癌;人乳头瘤病毒;VOI =兴趣量;OS =总生存期;PFS =无进展生存期;LRP =局部区域进展;C-index = Harrell’s concordance index;随机生存森林;CV =交叉验证;AUC =曲线下面积;SD =标准差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信