Bo Qin, Shu Shen, Hao Chen, Yiying Wang, Jinlong Ding, Jiefeng Ding
{"title":"Inactivation of the key ORFs of HBV for antiviral therapy by non-cleavage base editing.","authors":"Bo Qin, Shu Shen, Hao Chen, Yiying Wang, Jinlong Ding, Jiefeng Ding","doi":"10.1016/j.micpath.2025.107689","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Hepatitis B virus (HBV) infection is the key cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Currently available anti-HBV drugs are more or less defective owing to the unremovable covalently closed circular DNA (cccDNA). Thus, CRISPR/Cas9 is a promising therapeutic strategy for anti-HBV therapy. Double-strand breaks (DSBs) and uncontrolled genomic rearrangements occur inevitably. In this study, we aimed to use base editors to control HBV infection.</p><p><strong>Methods: </strong>Base editors precisely instal targeted point mutations without requiring DSBs or donor DNA templates, and without relying on homology-directed repair (HDR) or nonhomologous end joining (NHEJ). Adenine base editors (ABEs) and cytosine base editors (CBEs) catalyse A• T to G •C and C• G to T •A conversions, respectively. In this study, to control HBV replication by modifying and inactivating key HBV genes, recently developed CRISPR/Cas-mediated SpRY-ABE8e and CBE4-max were utilised to falsify and invalidate the ATG initiation codons of the S, Pre-S1, PreS2, C, Pre-C, X, and P genes.</p><p><strong>Results: </strong>The ATG initiation codons of HBV genes were edited by ABE/CBE. The expected point mutations were successfully introduced, resulting in the simultaneous suppression of HBV antigen expression and replication to varying degrees.</p><p><strong>Conclusions: </strong>Our study focused on clearing HBV using base and provided experimental and theoretical evidence for the treatment of chronic HBV infection. Thus, base editing is a potential strategy for curing CHB by permanently inactivating the integrated DNA and cccDNA without using DSBs.</p>","PeriodicalId":18599,"journal":{"name":"Microbial pathogenesis","volume":" ","pages":"107689"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial pathogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.micpath.2025.107689","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Hepatitis B virus (HBV) infection is the key cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Currently available anti-HBV drugs are more or less defective owing to the unremovable covalently closed circular DNA (cccDNA). Thus, CRISPR/Cas9 is a promising therapeutic strategy for anti-HBV therapy. Double-strand breaks (DSBs) and uncontrolled genomic rearrangements occur inevitably. In this study, we aimed to use base editors to control HBV infection.
Methods: Base editors precisely instal targeted point mutations without requiring DSBs or donor DNA templates, and without relying on homology-directed repair (HDR) or nonhomologous end joining (NHEJ). Adenine base editors (ABEs) and cytosine base editors (CBEs) catalyse A• T to G •C and C• G to T •A conversions, respectively. In this study, to control HBV replication by modifying and inactivating key HBV genes, recently developed CRISPR/Cas-mediated SpRY-ABE8e and CBE4-max were utilised to falsify and invalidate the ATG initiation codons of the S, Pre-S1, PreS2, C, Pre-C, X, and P genes.
Results: The ATG initiation codons of HBV genes were edited by ABE/CBE. The expected point mutations were successfully introduced, resulting in the simultaneous suppression of HBV antigen expression and replication to varying degrees.
Conclusions: Our study focused on clearing HBV using base and provided experimental and theoretical evidence for the treatment of chronic HBV infection. Thus, base editing is a potential strategy for curing CHB by permanently inactivating the integrated DNA and cccDNA without using DSBs.
期刊介绍:
Microbial Pathogenesis publishes original contributions and reviews about the molecular and cellular mechanisms of infectious diseases. It covers microbiology, host-pathogen interaction and immunology related to infectious agents, including bacteria, fungi, viruses and protozoa. It also accepts papers in the field of clinical microbiology, with the exception of case reports.
Research Areas Include:
-Pathogenesis
-Virulence factors
-Host susceptibility or resistance
-Immune mechanisms
-Identification, cloning and sequencing of relevant genes
-Genetic studies
-Viruses, prokaryotic organisms and protozoa
-Microbiota
-Systems biology related to infectious diseases
-Targets for vaccine design (pre-clinical studies)