Nathalie Fuentes, Arjun Suri, Annette M Medina, Alain Moffett, Aakash Patel, Stanley C Kwok
{"title":"Assessment of the Effects of Ionizing Radiation on Biologic Drugs: mAb Product Quality and Risk Evaluation for Global Shipping Logistics.","authors":"Nathalie Fuentes, Arjun Suri, Annette M Medina, Alain Moffett, Aakash Patel, Stanley C Kwok","doi":"10.1007/s11095-025-03867-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>It is critical to ensure that drug product quality is not negatively impacted after transportation and shipping so that the product remains safe and effective. The traditional shipping validation and product quality assessments focus on factors such as temperature, vibration, shock, agitation, light exposure, and potential contamination. At the same time, due to the complexity of biologics modalities including cell therapy products, the increasing prevalence of non-intrusive inspection (NII) technologies employing ionizing radiation such as X-ray and Gamma rays at security screening at border points has prompted an evaluation of their impact on biologics.</p><p><strong>Methods: </strong>In this study, the effect of X-ray radiation on monoclonal antibody (mAb)-related biologic drug substance and drug products was investigated by subjecting them to worst-case scenario radiation levels, approximately 200 times higher than the recommended dose, within commonly deployed shipping packaging and primary container. Subsequently, product quality attributes, including visible particles, sub-visible particles, purity, and charge variants, were assessed.</p><p><strong>Results: </strong>The results revealed no significant changes in the exposed samples compared to controls, indicating that the mAb-related biologics maintained their product quality despite exposure to heightened X-ray radiation.</p><p><strong>Conclusions: </strong>These findings provide valuable assurance regarding the stability and safety of mAb-related biologics when subjected to X-ray radiation during transportation and security screenings. Our goal is that this work will stimulate further discussion and guidance from drug sponsors and health authorities to evaluate ionizing radiation impact on current biologics and others new modalities to ensure drug and patient safety.</p>","PeriodicalId":20027,"journal":{"name":"Pharmaceutical Research","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11095-025-03867-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: It is critical to ensure that drug product quality is not negatively impacted after transportation and shipping so that the product remains safe and effective. The traditional shipping validation and product quality assessments focus on factors such as temperature, vibration, shock, agitation, light exposure, and potential contamination. At the same time, due to the complexity of biologics modalities including cell therapy products, the increasing prevalence of non-intrusive inspection (NII) technologies employing ionizing radiation such as X-ray and Gamma rays at security screening at border points has prompted an evaluation of their impact on biologics.
Methods: In this study, the effect of X-ray radiation on monoclonal antibody (mAb)-related biologic drug substance and drug products was investigated by subjecting them to worst-case scenario radiation levels, approximately 200 times higher than the recommended dose, within commonly deployed shipping packaging and primary container. Subsequently, product quality attributes, including visible particles, sub-visible particles, purity, and charge variants, were assessed.
Results: The results revealed no significant changes in the exposed samples compared to controls, indicating that the mAb-related biologics maintained their product quality despite exposure to heightened X-ray radiation.
Conclusions: These findings provide valuable assurance regarding the stability and safety of mAb-related biologics when subjected to X-ray radiation during transportation and security screenings. Our goal is that this work will stimulate further discussion and guidance from drug sponsors and health authorities to evaluate ionizing radiation impact on current biologics and others new modalities to ensure drug and patient safety.
期刊介绍:
Pharmaceutical Research, an official journal of the American Association of Pharmaceutical Scientists, is committed to publishing novel research that is mechanism-based, hypothesis-driven and addresses significant issues in drug discovery, development and regulation. Current areas of interest include, but are not limited to:
-(pre)formulation engineering and processing-
computational biopharmaceutics-
drug delivery and targeting-
molecular biopharmaceutics and drug disposition (including cellular and molecular pharmacology)-
pharmacokinetics, pharmacodynamics and pharmacogenetics.
Research may involve nonclinical and clinical studies, and utilize both in vitro and in vivo approaches. Studies on small drug molecules, pharmaceutical solid materials (including biomaterials, polymers and nanoparticles) biotechnology products (including genes, peptides, proteins and vaccines), and genetically engineered cells are welcome.