Eric Delpy, Anne-Marie Bétat, Annie Delaunois, Christophe Drieu la Rochelle, Eric Martel, Jean-Pierre Valentin
{"title":"A comprehensive review of 20 years of progress in nonclinical QT evaluation and proarrhythmic assessment.","authors":"Eric Delpy, Anne-Marie Bétat, Annie Delaunois, Christophe Drieu la Rochelle, Eric Martel, Jean-Pierre Valentin","doi":"10.1007/s10928-025-09979-2","DOIUrl":null,"url":null,"abstract":"<p><p>The assessment of drug-induced QT interval prolongation and associated proarrhythmic risks, such as Torsades de Pointes (TdP), has evolved significantly over the past decades. This review traces the development of nonclinical QT evaluation, highlighting key milestones and innovations that have shaped current practices in cardiac safety assessment. The emergence of regulatory guidelines, including International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) S7B, established a nonclinical framework for evaluating drug effects on cardiac repolarization, addressing concerns raised by drug withdrawals in the 1990s. Advances in in vitro, in vivo, and in silico models have enhanced the predictive accuracy of nonclinical studies, with the hERG assay and telemetry-based animal models becoming gold standards. Recent initiatives, such as the Comprehensive in vitro Proarrhythmia Assay (CiPA) and the Japan iPS Cardiac Safety Assessment (JiCSA), emphasize integrating mechanistic insights from human-derived cardiomyocyte models and computational approaches to refine risk predictions. The 2020s mark a shift toward integrated nonclinical-clinical risk assessments, as exemplified by the ICH E14/S7B Questions and Answers. These highlight the need of best practices for study design, data analysis, and interpretation to support regulatory decision-making. Furthermore, the adoption of New Approach Methodologies (NAMs) and reinforced adherence to 3Rs principles (Reduce, Refine, Replace) reflect a commitment to ethical and innovative safety science. This review underscores the importance of harmonized and translational approaches in cardiac safety evaluation, providing a foundation for advancing drug development while safeguarding patient safety. Future directions include further integration of advanced methodologies and regulatory harmonization to streamline nonclinical and clinical risk assessments.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":"52 3","pages":"32"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-025-09979-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The assessment of drug-induced QT interval prolongation and associated proarrhythmic risks, such as Torsades de Pointes (TdP), has evolved significantly over the past decades. This review traces the development of nonclinical QT evaluation, highlighting key milestones and innovations that have shaped current practices in cardiac safety assessment. The emergence of regulatory guidelines, including International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) S7B, established a nonclinical framework for evaluating drug effects on cardiac repolarization, addressing concerns raised by drug withdrawals in the 1990s. Advances in in vitro, in vivo, and in silico models have enhanced the predictive accuracy of nonclinical studies, with the hERG assay and telemetry-based animal models becoming gold standards. Recent initiatives, such as the Comprehensive in vitro Proarrhythmia Assay (CiPA) and the Japan iPS Cardiac Safety Assessment (JiCSA), emphasize integrating mechanistic insights from human-derived cardiomyocyte models and computational approaches to refine risk predictions. The 2020s mark a shift toward integrated nonclinical-clinical risk assessments, as exemplified by the ICH E14/S7B Questions and Answers. These highlight the need of best practices for study design, data analysis, and interpretation to support regulatory decision-making. Furthermore, the adoption of New Approach Methodologies (NAMs) and reinforced adherence to 3Rs principles (Reduce, Refine, Replace) reflect a commitment to ethical and innovative safety science. This review underscores the importance of harmonized and translational approaches in cardiac safety evaluation, providing a foundation for advancing drug development while safeguarding patient safety. Future directions include further integration of advanced methodologies and regulatory harmonization to streamline nonclinical and clinical risk assessments.
期刊介绍:
Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.