Megan Vaughan, Philip Denmead, Nicole Tay, Ranjan Rajendram, Michel Michaelides, Emily Patterson
{"title":"How early can we detect diabetic retinopathy? A narrative review of imaging tools for structural assessment of the retina.","authors":"Megan Vaughan, Philip Denmead, Nicole Tay, Ranjan Rajendram, Michel Michaelides, Emily Patterson","doi":"10.1007/s00417-025-06828-3","DOIUrl":null,"url":null,"abstract":"<p><p>Despite current screening models, enhanced imaging modalities, and treatment regimens, diabetic retinopathy (DR) remains one of the leading causes of vision loss in working age adults. DR can result in irreversible structural and functional retinal damage, leading to visual impairment and reduced quality of life. Given potentially irreversible photoreceptor damage, diagnosis and treatment at the earliest stages will provide the best opportunity to avoid visual disturbances or retinopathy progression. We will review herein the current structural imaging methods used for DR assessment and their capability of detecting DR in the first stages of disease. Imaging tools, such as fundus photography, optical coherence tomography, fundus fluorescein angiography, optical coherence tomography angiography and adaptive optics-assisted imaging will be reviewed. Finally, we describe the future of DR screening programmes and the introduction of artificial intelligence as an innovative approach to detecting subtle changes in the diabetic retina. CLINICAL TRIAL REGISTRATION NUMBER: N/A.</p>","PeriodicalId":12795,"journal":{"name":"Graefe’s Archive for Clinical and Experimental Ophthalmology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graefe’s Archive for Clinical and Experimental Ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00417-025-06828-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite current screening models, enhanced imaging modalities, and treatment regimens, diabetic retinopathy (DR) remains one of the leading causes of vision loss in working age adults. DR can result in irreversible structural and functional retinal damage, leading to visual impairment and reduced quality of life. Given potentially irreversible photoreceptor damage, diagnosis and treatment at the earliest stages will provide the best opportunity to avoid visual disturbances or retinopathy progression. We will review herein the current structural imaging methods used for DR assessment and their capability of detecting DR in the first stages of disease. Imaging tools, such as fundus photography, optical coherence tomography, fundus fluorescein angiography, optical coherence tomography angiography and adaptive optics-assisted imaging will be reviewed. Finally, we describe the future of DR screening programmes and the introduction of artificial intelligence as an innovative approach to detecting subtle changes in the diabetic retina. CLINICAL TRIAL REGISTRATION NUMBER: N/A.
期刊介绍:
Graefe''s Archive for Clinical and Experimental Ophthalmology is a distinguished international journal that presents original clinical reports and clini-cally relevant experimental studies. Founded in 1854 by Albrecht von Graefe to serve as a source of useful clinical information and a stimulus for discussion, the journal has published articles by leading ophthalmologists and vision research scientists for more than a century. With peer review by an international Editorial Board and prompt English-language publication, Graefe''s Archive provides rapid dissemination of clinical and clinically related experimental information.