{"title":"Deep learning health space model for ordered responses.","authors":"Chanhee Lee, Taesung Park","doi":"10.1186/s12911-025-03026-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>As personalized medicine becomes more prevalent, the objective measurement and visualization of an individual's health status are becoming increasingly crucial. However, as the dimensions of data collected from each individual increase, this task becomes more challenging. The Health Space (HS) model provides a statistical framework for visualizing an individual's health status on biologically meaningful axes. In our previous study, we developed HS models using statistical models such as logistic regression model (LRM) and the proportional odds model (POM). However, these statistical HS models are limited in their ability to accommodate complex non-linear biological relationships.</p><p><strong>Methods: </strong>In order to model complex non-linear biological relationship, we developed deep learning HS models. Specifically, we formulated five distinct deep learning HS models: four standard binary deep neural networks (DNNs) for binary outcomes and one deep ordinal neural network (DONN) that accounts for the ordinality of the dependent variable. We trained these models using 32,140 samples from the Korea National Health and Nutrition Examination Survey (KNHANES) and validated them with data from the Ewha-Boramae cohort (862 samples) and the Korea Association Resource (KARE) project (3,199 samples).</p><p><strong>Results: </strong>The proposed deep learning HS models were compared with the existing statistical HS model based on the POM. Deep learning HS model using DONN demonstrated the best performance in discriminating health status in both the training and external datasets.</p><p><strong>Conclusion: </strong>We developed deep learning HS models to capture complex non-linear biological relationships in HS and compared their performance with our previously best-performing statistical HS model. The deep learning HS models show promise as effective tools for objectively and meaningfully visualizing an individual's health status.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"191"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12084989/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-025-03026-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: As personalized medicine becomes more prevalent, the objective measurement and visualization of an individual's health status are becoming increasingly crucial. However, as the dimensions of data collected from each individual increase, this task becomes more challenging. The Health Space (HS) model provides a statistical framework for visualizing an individual's health status on biologically meaningful axes. In our previous study, we developed HS models using statistical models such as logistic regression model (LRM) and the proportional odds model (POM). However, these statistical HS models are limited in their ability to accommodate complex non-linear biological relationships.
Methods: In order to model complex non-linear biological relationship, we developed deep learning HS models. Specifically, we formulated five distinct deep learning HS models: four standard binary deep neural networks (DNNs) for binary outcomes and one deep ordinal neural network (DONN) that accounts for the ordinality of the dependent variable. We trained these models using 32,140 samples from the Korea National Health and Nutrition Examination Survey (KNHANES) and validated them with data from the Ewha-Boramae cohort (862 samples) and the Korea Association Resource (KARE) project (3,199 samples).
Results: The proposed deep learning HS models were compared with the existing statistical HS model based on the POM. Deep learning HS model using DONN demonstrated the best performance in discriminating health status in both the training and external datasets.
Conclusion: We developed deep learning HS models to capture complex non-linear biological relationships in HS and compared their performance with our previously best-performing statistical HS model. The deep learning HS models show promise as effective tools for objectively and meaningfully visualizing an individual's health status.
期刊介绍:
BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.