Ashok Kumar Bishoyi, Sina Nouri, Ahmed Hussen, Alireza Bayani, Mohammad Navid Khaksari, Hamed Soleimani Samarkhazan
{"title":"Nanotechnology in leukemia therapy: revolutionizing targeted drug delivery and immune modulation.","authors":"Ashok Kumar Bishoyi, Sina Nouri, Ahmed Hussen, Alireza Bayani, Mohammad Navid Khaksari, Hamed Soleimani Samarkhazan","doi":"10.1007/s10238-025-01686-z","DOIUrl":null,"url":null,"abstract":"<p><p>Leukemia, a group of blood cancers, presents a significant global health challenge. Despite advancements in conventional therapies like chemotherapy and immunotherapy, the need for more effective and less toxic treatments remains. Nanotechnology offers a promising avenue for targeted drug delivery and immune modulation in the fight against leukemia. Through the utilization of nanomaterials' special qualities, like their small size, large surface area, and capacity to transport a variety of payloads, scientists are creating novel ways to get around the drawbacks of conventional treatments. These strategies include targeted drug delivery, immune cell activation, and overcoming drug resistance. However, challenges remain in translating these promising nanotechnological approaches into clinical applications. Addressing issues such as toxicity, biodistribution, and regulatory hurdles is crucial for the successful development of nanomedicine for leukemia. In conclusion, nanotechnology offers a promising future for the treatment of leukemia. Continued research and development are essential to unlock the full potential of nanomaterials and improve patient outcomes. The potential of nanotechnology-based strategies to improve the effectiveness of leukemia treatments is explored in this review. We go over the function of different nanomaterials in delivering therapeutic agents to leukemia cells, such as liposomes, polymeric nanoparticles, and inorganic anoparticles. We also investigate the engineering of nanomaterials to influence the immune system and promote anti-tumor reactions.</p>","PeriodicalId":10337,"journal":{"name":"Clinical and Experimental Medicine","volume":"25 1","pages":"166"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12084282/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10238-025-01686-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Leukemia, a group of blood cancers, presents a significant global health challenge. Despite advancements in conventional therapies like chemotherapy and immunotherapy, the need for more effective and less toxic treatments remains. Nanotechnology offers a promising avenue for targeted drug delivery and immune modulation in the fight against leukemia. Through the utilization of nanomaterials' special qualities, like their small size, large surface area, and capacity to transport a variety of payloads, scientists are creating novel ways to get around the drawbacks of conventional treatments. These strategies include targeted drug delivery, immune cell activation, and overcoming drug resistance. However, challenges remain in translating these promising nanotechnological approaches into clinical applications. Addressing issues such as toxicity, biodistribution, and regulatory hurdles is crucial for the successful development of nanomedicine for leukemia. In conclusion, nanotechnology offers a promising future for the treatment of leukemia. Continued research and development are essential to unlock the full potential of nanomaterials and improve patient outcomes. The potential of nanotechnology-based strategies to improve the effectiveness of leukemia treatments is explored in this review. We go over the function of different nanomaterials in delivering therapeutic agents to leukemia cells, such as liposomes, polymeric nanoparticles, and inorganic anoparticles. We also investigate the engineering of nanomaterials to influence the immune system and promote anti-tumor reactions.
期刊介绍:
Clinical and Experimental Medicine (CEM) is a multidisciplinary journal that aims to be a forum of scientific excellence and information exchange in relation to the basic and clinical features of the following fields: hematology, onco-hematology, oncology, virology, immunology, and rheumatology. The journal publishes reviews and editorials, experimental and preclinical studies, translational research, prospectively designed clinical trials, and epidemiological studies. Papers containing new clinical or experimental data that are likely to contribute to changes in clinical practice or the way in which a disease is thought about will be given priority due to their immediate importance. Case reports will be accepted on an exceptional basis only, and their submission is discouraged. The major criteria for publication are clarity, scientific soundness, and advances in knowledge. In compliance with the overwhelmingly prevailing request by the international scientific community, and with respect for eco-compatibility issues, CEM is now published exclusively online.