{"title":"Discovering Intron Gain Events in Humans Through Large-Scale Evolutionary Comparisons.","authors":"Celine Hoh, Steven L Salzberg","doi":"10.1093/gbe/evaf091","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid growth in the number of sequenced genomes makes it possible to search for the appearance of entirely new introns in the human lineage. In this study, we compared the genomic sequences for 19,120 human protein-coding genes to a collection of 3,493 vertebrate genomes, mapping the patterns of intron alignments onto a phylogenetic tree. This mapping allowed us to trace many intron gain events to precise locations in the tree, corresponding to distinct points in evolutionary history. We discovered 342 intron gain events, all of them relatively recent, in 293 distinct human genes. Among these events, we explored the hypothesis that intronization was the mechanism responsible for intron gain. Intronization events were identified by locating instances where human introns correspond to exonic sequences in homologous vertebrate genes. Although apparently rare, we found three compelling cases of intronization, and for each of those, we compared the human protein sequence and structure to homologous genes that lack the introns.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12124190/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evaf091","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid growth in the number of sequenced genomes makes it possible to search for the appearance of entirely new introns in the human lineage. In this study, we compared the genomic sequences for 19,120 human protein-coding genes to a collection of 3,493 vertebrate genomes, mapping the patterns of intron alignments onto a phylogenetic tree. This mapping allowed us to trace many intron gain events to precise locations in the tree, corresponding to distinct points in evolutionary history. We discovered 342 intron gain events, all of them relatively recent, in 293 distinct human genes. Among these events, we explored the hypothesis that intronization was the mechanism responsible for intron gain. Intronization events were identified by locating instances where human introns correspond to exonic sequences in homologous vertebrate genes. Although apparently rare, we found three compelling cases of intronization, and for each of those, we compared the human protein sequence and structure to homologous genes that lack the introns.
期刊介绍:
About the journal
Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.