A flexible machine learning Mendelian randomization estimator applied to predict the safety and efficacy of sclerostin inhibition.

IF 8.1 1区 生物学 Q1 GENETICS & HEREDITY
Marc-André Legault, Jason Hartford, Benoît J Arsenault, Archer Y Yang, Joelle Pineau
{"title":"A flexible machine learning Mendelian randomization estimator applied to predict the safety and efficacy of sclerostin inhibition.","authors":"Marc-André Legault, Jason Hartford, Benoît J Arsenault, Archer Y Yang, Joelle Pineau","doi":"10.1016/j.ajhg.2025.04.010","DOIUrl":null,"url":null,"abstract":"<p><p>Mendelian randomization (MR) enables the estimation of causal effects while controlling for unmeasured confounding factors. However, traditional MR's reliance on strong parametric assumptions can introduce bias if these are violated. We describe a machine learning MR estimator named quantile instrumental variable (Quantile IV) that achieves a low estimation error in a wide range of plausible MR scenarios. Quantile IV is distinctive in its ability to estimate nonlinear and heterogeneous causal effects and offers a flexible approach for subgroup analysis. Applying quantile IV, we investigate the impact of circulating sclerostin levels on heel bone mineral density, osteoporosis, and cardiovascular outcomes. Employing various MR estimators and colocalization techniques, our analysis reveals that a genetically predicted reduction in sclerostin levels significantly increases heel bone mineral density and reduces the risk of osteoporosis while showing no discernible effect on ischemic cardiovascular diseases. As a second application, we estimated the effect of increases in low-density lipoprotein cholesterol and waist-to-hip ratio on ischemic cardiovascular diseases using this well-known association as a positive control analysis. Quantile IV contributes to the advancement of MR methodology, and the selected applications demonstrate the applicability of our estimator in various MR contexts.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2025.04.010","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Mendelian randomization (MR) enables the estimation of causal effects while controlling for unmeasured confounding factors. However, traditional MR's reliance on strong parametric assumptions can introduce bias if these are violated. We describe a machine learning MR estimator named quantile instrumental variable (Quantile IV) that achieves a low estimation error in a wide range of plausible MR scenarios. Quantile IV is distinctive in its ability to estimate nonlinear and heterogeneous causal effects and offers a flexible approach for subgroup analysis. Applying quantile IV, we investigate the impact of circulating sclerostin levels on heel bone mineral density, osteoporosis, and cardiovascular outcomes. Employing various MR estimators and colocalization techniques, our analysis reveals that a genetically predicted reduction in sclerostin levels significantly increases heel bone mineral density and reduces the risk of osteoporosis while showing no discernible effect on ischemic cardiovascular diseases. As a second application, we estimated the effect of increases in low-density lipoprotein cholesterol and waist-to-hip ratio on ischemic cardiovascular diseases using this well-known association as a positive control analysis. Quantile IV contributes to the advancement of MR methodology, and the selected applications demonstrate the applicability of our estimator in various MR contexts.

一个灵活的机器学习孟德尔随机化估计用于预测硬化蛋白抑制的安全性和有效性。
孟德尔随机化(MR)能够在控制未测量的混杂因素的同时估计因果效应。然而,传统的MR依赖于强参数假设,如果违反这些假设,可能会引入偏差。我们描述了一个名为分位数工具变量(分位数IV)的机器学习MR估计器,它在广泛的可信MR场景中实现了低估计误差。分位数IV在估计非线性和异质性因果效应方面具有独特的能力,并为亚组分析提供了灵活的方法。应用分位数IV,我们研究循环硬化蛋白水平对足跟骨密度、骨质疏松症和心血管结局的影响。采用各种磁共振估计器和共定位技术,我们的分析显示,遗传预测的硬化蛋白水平降低可显著增加足跟骨矿物质密度,降低骨质疏松症的风险,但对缺血性心血管疾病没有明显影响。作为第二个应用,我们估计了低密度脂蛋白胆固醇和腰臀比增加对缺血性心血管疾病的影响,使用这一众所周知的关联作为阳性对照分析。分位数IV有助于MR方法的进步,所选的应用程序证明了我们的估计器在各种MR环境中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.70
自引率
4.10%
发文量
185
审稿时长
1 months
期刊介绍: The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信